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ABSTRACT

While Large Language Models (LLMs) become ever more dominant, classic pre-
trained word embeddings sustain their relevance through computational efficiency
and nuanced linguistic interpretation. Drawing from recent studies demonstrating
that the convergence of GloVe and word2vec optimizations all tend towards log-
co-occurrence matrix variants, we construct a novel word representation system
called Bit-cipher that eliminates the need of backpropagation while leveraging
contextual information and hyper-efficient dimensionality reduction techniques
based on unigram frequency, providing strong interpretability, alongside efficiency.
We use the bit-cipher algorithm to train word vectors via a two-step process that
critically relies on a hyperparameter—bits—that controls the vector dimension.
While the first step trains the bit-cipher, the second utilizes it under two different
aggregation modes—summation or concatenation—to produce contextually rich
representations from word co-occurrences. We extend our investigation into bit-
cipher’s efficacy, performing probing experiments on part-of-speech (POS) tagging
and named entity recognition (NER) to assess its competitiveness with classic
embeddings like word2vec and GloVe. Additionally, we explore its applicability
in LM training and fine-tuning. By replacing embedding layers with cipher em-
beddings, our experiments illustrate the notable efficiency of cipher in accelerating
the training process and attaining better optima compared to conventional train-
ing paradigms. In fine-tuning experiments, training cipher embeddings on target
datasets and replacing the embedding layer of the LMs to be fine-tuned negates the
need for extensive model adjustments, offering a highly efficient transfer learning
alternative. Experiments on the integration of bit-cipher embedding layers with
Roberta, T5, and OPT, prior to or as a substitute for fine-tuning, showcase a promis-
ing enhancement to transfer learning, allowing rapid model convergence while
preserving competitive performance.

1 INTRODUCTION

Word embedding algorithms serve as a crucial tools for understanding the semantics of categorical
features in natural language processing (NLP) and deep learning (DL). Moreover, they continue to
form an integral component of modern large language modeling (LLM) systems, since the initial step
that LLMs, too, must approach is the efficient representation of tokens by static embeddings. Prior to
the advent of the transformer architecture, it was research on pre-trained word embedding techniques
that enabled DL for NLP. Pioneered by Mikolov et al.| (2013a), word2vec ushered in NLP’s era of
representation learning, using the continuous bag-of-words and skip-gram models to demonstrate
that it was possible to learn meaningful, low-dimensional representations with limited resources by
predicting co-occurring tokens.

To accelerate learning via summary statistics (co-frequency), GloVe was ultimately introduced to
harness the global statistics of co-occurrences (Pennington et al.| [2014a), and moreover, without
the use of contrastive learning. From there, it was ultimately a pivot to the modeling of sub-word



information in a word2vec-like variant called FastText (Bojanowski et al.| [2017bga) that guided
further pre-transformer advances, leaving us to ask:

Could further improvements instead be made to the objective and optimization of
embedding architectures, as opposed to their granularity of application?

Questions like this seem obscure with the arrival of the transformer, since the research paradigm has
shifted from pre-trained word embeddings to more nuanced ‘contextual’ representations, defined
by the hidden states of transformers. This shift saw the emergence of powerful models such as
BERT, ELMo, and GPT (Devlin et al.l [2019; [Peters et al., |2018a; [Radford et al., 2018};2019), all
of which relied on training LLMs to generate even higher-performance representations of words
that demonstrate greater nuance at prediction of downstream tasks. However, since transformer
embedding layers generally only leverage sub-word information (and positional encoding) over
GloVe and word2vec, we see the presented main research question as not only valid, but by extension,
capable of improving LLM architectures, since all require some form of embedding.

Notwithstanding the success of LLMs, one should still ask: Does the study of traditional word
embedding methods retain any value? In this work, we argue in favor based on the following points:
(1) the computational costs of training LLMs are substantial (Rae et al., 2022, [Thoppilan et al.| 2022)),
and obtaining contextual representations are essentially a by-product rather than the main objective of
training LLMs. (2) Due to the cost-intensive nature of training LL.Ms, there is an inherent non-ideal
trade-off between optimal performance and cost-effectiveness in them. (3) Initial pre-trained word
embedding layers can greatly speed up and/or reduce the costs of training larger models that depend
on embedding layers (Panahi et al., 2020).

In this work, we address points (1)—(3) by introducing the bit-cipher, which is a technique capable of
representing words in a highly efficient manner into user-defined dimensionalities of word vectors.
Drawing inspiration from one-hot encoding, the bit-cipher follows a straightforward and explicit
process for vector assignment. Moreover, we extend capability by aligning with recent studies showing
that the various forms of GloVe and word2vec converge towards variants of log-co-occurrence
matrices. While we underscore the efficiency and competitiveness of bit-cipher against other pre-
trained word embedding methods, we advise against using it in isolation or comparing it directly with
contextual word embeddings. We perceive it more as a means to be used as a component of larger
LM architectures, rather than as a standalone utility. In particular, we integrate contextual information
via two different methods based on the summation (Sum) and concatenation (Cat) of co-occurrent
information. Our investigations find that concatenation-based models using a large window size
perform competitively when compared to GloVe and word2vec on Part-of-Speech (POS) tagging and
Named Entity Recognition (NER) tasks, often out-performing both. Furthermore, experiments on
integrating cipher embeddings into LM training and fine-tuning are conducted to show two of the
main potential use scenarios of bit-cipher stating its efficiency and competitive nature with traditional
methods.

2 RELATED WORK

Generations and types of pre-trained word embeddings: Representation learning in NLP has gone
through many large transitions, starting from static word vectors (Mikolov et al.| | 2013ajb; Pennington
et al.,|2014b)), and into contextual word representations (Howard & Ruder;, 2018 |Peters et al., [ 2018b),
and now the predominant large language models (LLMs) (Devlin et al.l 2019} |[Radford et al.| 2018;
2019). These trends have often been based around architectural shifts, to/from the ubiquity of
recurrent neural networks (RNNs) (Hochreiter & Schmidhuber, |[1997), and then into reliance on
attention mechanisms (Bahdanau et al., 2015) and the subsequent proliferation of self-attention
leading to transformer-based LLMs (Vaswani et al.,[2017)).

Optimization for pre-trained word embedding. In the domain of pre-trained word embeddings,
optimization methods are the essential that govern the performance and efficacy of the resulting
word vectors. Early word embedding methods, like word2vec (Mikolov et al.,2013a)) used gradient
descent-based strategies to maximize context word likelihood, setting a foundation for subsequent
models. Subsequent evolution led to the introduction of GloVe, which refined the optimization process
by formulating a cost function based on global word co-occurrence statistics, merging local context
and global matrix factorization methods to improve word representation. Despite its effectiveness,



the performance of GloVe’s optimization is limited by its predefined context window size to capture
broader context (Pennington et al., 2014b)).

Following significant development in the optimization of pre-trained word embeddings was revealed
by|Levy & Goldberg, 2014, They demonstrated that the skip-gram model with negative sampling
implicitly executes matrix factorization on a word-context matrix which represents the pointwise
mutual information (PMI) of the respective word-context pairs, emphasizing the critical role of matrix
factorization in optimization techniques. This idea led to the understanding of how PMI-based word
embeddings can encapsulate meaningful semantics (Arora et al.,[2016). Recent study (Bojanowski
et al.| 2017a) further improved performance with subword embeddings, treating each word as a bag
of character n-grams, particularly benefiting morphologically rich languages. Current research even
extends these techniques to sentence and paragraph levels for more efficient representations (Arora
et al., 2017).

Dimensionality Reduction with Embedding. Advances in dimensionality reduction have signifi-
cantly contributed to word embeddings. Traditional techniques, such as PCA (Jolliffe,|1986)) and SVD
(Klema & Laub), [1980), transformed high-dimensional data into manageable lower-dimensional space,
albeit with information loss. More recent works like [Liu et al.l [2016|introduced novel methods like
Kernelized Matrix Factorization (KMF) that rejuvenated traditional matrix factorization techniques.
Additionally, Heidenreich et al. (Heidenreich & Williams), [2022)) elucidated the deep connection
between word representation algorithms and co-occurrence matrix factorization. The BERT model
(Devlin et al., [2019)), despite its high-dimensionality, efficiently captures word semantics using
dimensionality reduction techniques within a transformer architecture.

However, the techniques talked about above always involve training neural networks. A method
that combines dimensionality reduction techniques with leveraging co-occurrence statistics for
learning efficient word representations, without the need for neural network training to learn explicit
representations of tokens, would be beneficial and ideal. As our primary focus, it will be discussed in
the following section.

Language Model training and fine-tuning. In the days following the advent of the Transformer
model, when Large Language Models (LLMs) were not as prevalent as they are today, the predominant
method for utilizing Language Models (LMs) was through a process of pre-training and subsequent
fine-tuning for specific downstream tasks. With the model size not as large as today’s, it is not as
expansive as fine-tuning a LLM. Consequently, 1) fine-tuning a language model for a specific purpose
was less computationally intensive, and 2) the intrinsic properties of fine-tuning ensured that models
could always achieve better performance through task-specific fine-tuning. However, with training
language models at scale becoming possible and the dominant paradigm of carrying out NLP research,
the cost of doing LM-related experiments has also increased. Despite the extraordinary power and
utility of LLMs, the training process usually takes days and costs a huge amount of money while
sometimes finding it hard to outperform smaller, fine-tuned language models (Liu et al.,|2022) on
specific downstream tasks. In section 5} we conduct experiments both for language model training
and fine-tuning to demonstrate two useful scenarios to fit bit-cipher into the modern LLM world.

3 BIT-CIPHER

3.1 DEFINITION OF BIT-CIPHER

Standard-basis encoding is unavoidable for NLP applications, as one must always encode tokens from
a given model’s vocabulary: W. This makes dimensionality reduction necessary for NLP applications,
as the combinatorial overhead on the model parameters required to process | W |-dimensional hidden
states becomes tremendous inside of models. While dimensionality reduction can be handled via
gradient-based optimization in DL systems, the random nature of DL optimization obfuscates the
meaning of low dimensions. However, we conjecture that a similar and explicit encoder-decoder-style
factorization of standard-basis information exists.

Supposing each token ¢ in W has identity modified from the usual one-hot vector as follows: (1)
select a ‘low’ dimension: b < |W|, and (2) assign a unique bit-vector, 1, € {0,1}" to each. We
base our approach on a distinguishability hypothesis: which expects that a ‘good’ order for the
bits distinguishes the highest-frequency tokens best, and has latitude to assign similar-frequency




tokens similar vectors, meaning word vectors are assigned based on unigram frequency ranking.
Working along these lines, we define b-bit encipherment as the process of assigning probabilistically
normalized (e.g., vectors are probabilistic vectors and the modulus of vectors is 1) with all b-bit
vectors in a ‘smooth’ order, by inducting the order that ¢+ = 1: assigns the set of b standard basis
vectors: VP to the b most-frequent tokens (generalizing one-hots/standard bases); i = 2: adds
standard-basis vectors to those from V;l;,l in reverse order of assignment, while filtering for unique

bit-vectors in {0, 1}°; i = 3: repeats step i = 2. b-bit vectors are then normalized for encipherment:
ve = ne/[nell1

3.2 MODELING NOISE IN OBSERVATIONS

To assure that co-occurrence matrices are dense, we modify the base representation of the model from
sparse, one-hot, to dense vectors of the same size. We first form a model: 8 € (0, 1)N , for the portion
of time that each i-token’s observations are (non-)erroneous as the definition shown above. Assuming
that the highest-frequency tokens will be the least erroneously observed, we assume that only one
error will be observed relative to each token’s observed frequency, that is: 5; = f;/(f; + 1), where
fi 1s the unigram frequency of token i. Next and regardless of the token that is observed, we wish to
modify its one-hot vector according to the probabilities that any different, j-token, should have been
observed, instead, which will take the form of another vector: o € (0, 1)N , but which is normalized:
llo|l1 = 1, and so define these other-token observation probabilities as: o; = (1 — f;/M)/(N — 1).
To understand ¢ intuitively, we first note that 1-minus each token’s unigram probability: 1 — f; /M
expresses the probability of each token not being observed. Hence, the model o assumes that these
(non-mutually exclusive) probabilities weight a distribution for the other token that should’ve been
observed. For each one-hot vector, y;, we then pull together these pieces to define noisy/dense
vectors as: v; = B;y; + (1 — ;)o, which form the embedding layers used in all language modeling
architectures.

3.3 RUNDOWN OF PROCEDURALLY BUILDING CIPHER EMBEDDINGS

Knowing the definition and the encoding method of noise into cipher embedding enables us the
procedural generation of word vectors. With the given dimension d, the bit-cipher algorithm is
capable of generating the number of 2¢ — 1 vectors. In details of how the process works: The
procedure operates in two steps: Initially, a set of probabilistic vectors, referred to as "plain vectors",
is generated in accordance with the given definition. Subsequently, noise information is encoded
based on the analysis of the ratio of document frequency to word frequency, denoted as r; = d;/ f;.
This ratio determines the extent of noise information encoded into plain vectors. Specifically, words
with high word frequency but low document frequency yield a small ratio, indicating that the word is
noisy within the entire training set. Consequently, more noise information is "baked" into the plain
vectors and vice versa. This is achieved using the formula: v; = B;y; + (1 — ;)0 producing the final
set of cipher embeddings The pseudocode of how exactly the algorithm can be implemented is also
shown in Fig?]

3.4 ILLUSTRATION THROUGH A CONCRETE SAMPLE CASE — 5-BIT CIPHER

As depicted in FigI] an example with 5 bits is illustrated. In this scenario, the bit-cipher algorithm
can produce 31 distinct vectors with the capability of handling a corpus contain 31 unique tokens
with each represented by a unique 5-bit vector. To elucidate the operation of the algorithm, consider
the following steps visualized in the figure:

1. The first vector corresponds to the most frequent word in the corpus, assigning the bit-number 1 a
value of 1, and all others a value of 0.

2. The second vector, representing the next frequent word, assigns bit-number 2 a value of 1, with all
other bits set to 0. This pattern continues for the top C'(5,1) = 5 words, assigning a value of 1 to the
corresponding position based on ranking.

3. Upon reaching the count of 5, words ranked between [C'(5,1) + 1,C(5,1) + C(5,2)] e.g., [6, 15]
are assigned values in reverse order of index; two positions are assigned a value of 1/2 = 0.5, and all
others are 0.



procedure BIT-CIPHER(/V, b) > Construct a b-bit cipher of N < 20=1 dimensions.

1:
2 B  [0]
3 fork=1,---,bdo > 1. Initialize sets for differently-normed bit-vectors.
4: B I
50 UV« {0}Vxb {o}Vxb
6: i,J,k +0,0,1
7 forn=1,.---,N do
8 while V,, = 0 do > 2. Find the next norm-£ (or k + 1) bit-vector.
9 u  Abs (Bj.‘“‘” .y
10: if ||ull1 = k and v ¢ By, then > 3. The norm must be k and the vector unused.
11: B «+ Concatenate (B®, [u])
12: Vi < u/lull1 > 4. Norm the bit-vector and assign it.
13: U, < u
14: J—J+1
15: if j = |[B*~1| then > 5. Change basis vector/component of modification.
16: 7+0
17: 14—1+1
18: if - = b then > 6. Reverse the k-bit vector order and increment k.
19: if £ = 1 then
20: I «+ Reverse (I)
21: 1+ 0
22: B(¥) « Reverse (B(k))
23: k< k+1
24: return U,V > 7. Return matrices for deciphering and enciphering.

Figure 2: Bit-Cipher algorithm. After 1) initialization, the algorithm must 2) find new bit-vectors in
decreasing order of discernability, by 3) identifying bit-vectors of increasing norm (that have not yet
been assigned) via translations of k£ — 1-bit vectors by standard basis vectors. Unassigned bit-vectors
are then 4) normed for encipherment and assigned, along with the raw bit-vectors, which can be used
for deciphering b-dimensional predictions. Whenever the collection of k£ — 1-bit vectors no longer has
any unassigned ¢-component modifications, 5) the basis vector/component of modification must be
incremented, and when this is the case for all last-component modifications, it’s determined that there
are no unassigned k-bit vectors, necessitating a 6) reversal of the k-bit vector order, which maintains
smoothe transitions of discernability, upon future assignment. 7) Once all N dimensions have been
assigned a bit-vector (and normed counterpart), the matrices containing these vectors are returned.

2]
4. For words ranked within the intervals of 7]
[C(5,2) + 1,C(5,2) + C(5,3)], [C(5,3) + ]
1,C(5,3)+C(5,4)],and [C(5,4)+1,C(5,4)+ 21
C(5,5)], values are assigned to positions follow- 5 20]
ing the same logic. £ %g
Finally, each unique token is allocated a unique g 15
vector. By incorporating noise information rel- £ 3
ative to the distribution of words across various 101
documents, the finalized version of bit-cipher oy |
embedding is obtained. £ : —
1 ——
21 ]
l— ‘ ‘ ‘
3.5 BIT-CIPHER TRAINING DETAIL ' © Bitnumoer ’

To illustrate the efficacy of cipher embeddings, Figure 1: 5-bit example, carried out over its largest
models were trained on the CommonCrawl Vocabulary size of 2° — 1 = 31 vectors (rows).
dataset using Cat (concatenation) and Sum

(summation) methods for aggregating contextual information, informed by the bits hyperparam-
eter, log=True, and dtype="df’. The latter two parameters enhanced sensitivity to infrequent words



and adjusted noise levels based on word’s document frequency, optimizing focus on distinctive words
and mitigating biases.

The bit-cipher models are trained on five different scales of data-size: 0.5B-token, 1B-token, 2B-
token, 4B-token, and 8B-token with setting up different radius (window size) and bits. Through
incremental increase of the data-size, we aim to understand how model performance adjusts with the
intake of more data. Although this data-size range is relatively small compared to other pre-trained
word embedding methods, like GloVe trained with 42B and 840B tokens (Pennington et al.,[2014a)
and word2vec trained on Google News with 100B tokens (Mikolov et al.,[2013a). All that is being
said here is to validate the efficiency of bit-cipher as a means of learning representation, which we
further corroborate through a series of probing experiments in the sectionf4]

Standard spaCy tokenization (Honnibal et al.,[2020) was used for preprocessing, and models under-
went a two-step training procedure as per sec [3.3|& Figure[2] Contextual information was integrated
using Cat or Sum methods, with Cat models achieving representation lengths of 200d to 1600d
(following the exponent of 2 times 100) across different bit settings and Sum models blending context
information through element-wise addition, yielding a total of 60 models across varied radii and data
sizes.

For comparability across models, we derived word embeddings from the GIOVe 6B embeddings,
encompassing 400,000 tokens and with tokens appear in the evaluation datasets, yielding a total of
419,374 unique word embeddings. Any words identified within the context window that did not exist
in our curated word-list were labeled as out-of-vocabulary (OOV) and were consequently assigned a
distinctive embedding. This strategy for managing OOV words contributes to memory optimization,
given that it mandates the processing of only a particular subset of words.

4 PROBING EXPERIMENTS FOR LINGUISTIC FEATURES CAPTURE

4.1 PROBING MODELS

The conduction of Probing experiments are inspired by (Hewitt & Liang, [2019) with designing POS
tagging with the Georgetown University Multilayer (GUM) dataset (Zeldes},[2017), Named Entity
Recognition (NER) using CoNLL-2003 shared benchmark dataset (Tjong Kim Sang & De Meulder,
2003) to evaluate the performance of bit-cipher.

Named Entity Recognition. NER probing experiment is conducted by CoNLL-2003 shared bench-
mark dataset which is a collection of data about Reuters newswire articles containing four different
entity types: persons (PER), organizations (ORG), locations (LOC) and miscellaneous names (MISC).
The probing model for NER is trained on CoNLL-2003 training data using CoNLL-2003 validation
set for hyperparameter tuning. We follow the simplest and most straightforward setup with training
an MLP by only using the bit-cipher embedding as the feature and directly adopt labels in the
CoNLL-2003 dataset using the label-to-index method to convert each label into a unique number to
setup the input and output of the probing model.

Part-of-speech (POS) tagging. Part-of-speech tagging is a task of assigning labels to each word
with its corresponding grammatical category, such as noun, verb, adjective, etc. The Georgetown
University Multilayer (GUM) dataset is a richly annotated corpus that contains comprehensive
linguistic features. We extract the POS tagger of words in the GUM and train an MLP following the
same setup as the NER experiment using the bit-cipher embeddings as the input and POS taggers as
output.

4.2 PROBING MODEL BUILDING DETAILS

After obtaining the bit-cipher embeddings following we applied a two-step post-processing to
refine the word representations, and all probing experiments used this refined version of bit-cipher.
Initially, a whitening transformation was employed to eliminate redundancies and normalize the
embeddings, ensuring linearly uncorrelated word vectors with uniform variance, reducing inherent
bias and making the distribution of embeddings more consistent (Kessy et al., 2016).

Next, we implemented mean-centering and L2 Normalization on each vector to address shifts in
statistical distribution, inherent in probabilistic vectors like bit-cipher, which could cause inconsisten-



cies in magnitude. This process stabilized the numerical representations, making them robust, and
ensuring unbiased and scale-independent comparisons between word vectors.

For probing experiments, a 2-layer Multi-Layer Perception (MLP) was utilized, incorporating
LeakReLU activation to mitigate the vanishing gradient problem, and a dropout rate of 0.5 for
regularization (Xu et al., [2015). The output layer featured a LogSoftmax function, maintaining
numerical stability and a balanced probability distribution, key for optimal performance.

4.3 PROBING EXPERIMENTS RESULTS

Probing experiments conducted on 100 separate bit-cipher embedding sets are presented in Tables
Their results at POS tagging and NER demonstrate noticeable and perhaps expected variations
in performance. We see clearly that cipher-only models generally don’t improve with increases of
data (Tabs. [6]7), which is sensible given that ciphers only require ranking information and word
frequency ranks converge over relatively little data.

For both Sum and Cat models (Tabs. 2H4). T.ple 1
we see marked improvements from training over
increased volumes of data, as observed from Fig-
ure[3a] & Bb| that when the bits is fixed, increas-
ing the data size often results in improved model
performance. Furthermore, in the case of Sum
models, a clear performance gain is observed
with an increase in the value of bits with bits =
200 set of models consistently demonstrate the
highest performance. However, the performance
is%ikew?se sensible, assuming that tll)le quadratic Models POS NER

co-frequency information in co-occurrences re-  word2vec 81.20 (80.80) 78.55 (77.44)

quires more data to stabilize. However, between
the Sum and Cat models, we note that Cat mod-  G10Ve-0B 85.50 (86.09)  91.70 (92.18)

els improve over increases in data with greater  Cipher 75.23 (73.58) 86.19 (84.17)
stability—they scale more reliably as shown in )

Figure[3a] & 3B that with fixing bits, 8B models ~ CiPher (Sum)  85.67 (86.04)  90.67 (91.32)
always have the best performance. Moreover,  Cipher (Cat) 86.05 (86.32) 90.96 (91.51)
we find that Cat models appear to consistently
outperform same-dimension Sum models, de-
spite being constrained to fewer bits, as can be seen from the cross-section of comparable models
presented in Tab. |1} The inconsisency of model performance tendency is partially due to the fact
that we did not do any preprocessing of the data except lowercase when training the bit-cipher. With
refined preprocessing, the information gain would be even obviously to observe with the increase of
data size.

Comparison of a 300-dimensional
word2vec model against 200-dimensional models
(all others) on probing experiments. Note: both
of GloVe and word2vec were pre-trained exter-
nally using a larger radius of 10, by comparison
to the Sum and Cat models presented, which were
trained using r = 4.(values in the table are shown
as accuracy with Fl-score in Parentheses)

When similar quantities of data are utilized, models that are more performant than word2vec, as
well as quite comparable to GloVe, can be trained from bit-cipher co-occurrences. This can be see
directly in Tab. [T]for 200-dimensional bit-cipher models, which we compare to an externally-trained
300-dimensional word2vec model, a 200-dimensional GloVe and bit-cipher models. On its own, the
noised cipher out-competes word2vec, while relatively-low radius (r = 4) Sum and Cat models
perform comparably to a set of GloVe embedding, which were also externally trained. Despite the
Sum and Cat models both utilizing a substantially smaller radius (r = 4) than GloVe (r = 10), we
see that both of the comparable co-occurrent bit-cipher models out-perform GloVe at POS tagging,
and perform comparably at NER. Finally, we note that these results rank the bit-cipher at position
20 amongst the NER models retained on a well-known/public page: Tracking Progress in Natural
Language Processing (Ruder;, |2022)), and moreover, present POS tagging results quite similar to other
strong baselines (Ruder & Plank| 2018)), whose model architectures tend to be much more complex
and expressive than the MLPs used in our probing experiments.
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Figure 3: Comparison of Cat and Sum models in POS and NER experiments

5 EXPERIMENTS WITH LANGUAGE MODELS

Despite the models we’ve trained to exhibit the efficiency of cipher, and the probing experiments
conducted to demonstrate its competitiveness with classic pre-trained word embeddings, we further
explore what we believe to be two of the bit-cipher’s most valuable applications — LM training and
efficient LM fine-tuning.

5.1 A SHOWCASE OF BUILDING LANGUAGE MODELS WITH CIPHER

Firstly, the potential application of cipher is in —— Cold-starts: b, r=27,2°
the efficient training of language models. By us- — Warm-starts: b,r=27,2*
ing bit-cipher to construct the embedding layer \ff'd’s‘tat"st: b'b’ = 272'7272,
. . . . — arm-starts: b,r=27,
of the language model and integrating it into | . Backpropagation commences

the model’s training process, we could poten-
tially improve training efficiency and reduce the
demand for computational resources.

Models are trained from scratch, utilizing both
cold-start and warm-start approaches, with stan-
dard transformers (Vaswani et all, 2017). Our I
approach involves initially training bit-cipher

with the BabyLM 10M dataset and replacing the
randomly initialized embeddings in the warm-
start model. An additional technique employed
in the warm-start cipher with language model
training involves freezing the embedding layer
before the model is trained and subsequently un-
freezing it for further optimization using back- Figure 4 cold-start vs. warm-start perplexity curve
propagation. This freezing/thawing technique with training processing

offers two benefits: (1) As the embedding layer

is the first layer in any language model, it typically requires the most optimization time through
backpropagation and is thus the most expensive layer. By initially freezing this layer, (2) we avoid
the deterioration of model performance, in terms of perplexity, that can occur when the sensitive
and delicate embeddings are modified during warm-start training. Therefore, the warm-start model
adopts a two-step training procedure: initially freezing the embedding layer and proceeding with
regular training, followed by unfreezing the embedding layer for further optimization through back-
propagation. Cold-start models adhere to the traditional training approach, initializing all parameters
randomly and optimizing them through backpropagation.

Perplexity

=
o
o

10! 102 10°
Percentage of data elapsed while training

We conducted experiments using two sets of cipher embeddings: one with bits=27 and radius=2", and
another with bits=27 and radius=23. The comparison of perplexity between warm-start and cold-start
models is illustrated in Figd] The figure distinctly demonstrates that not only do warm-start models
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begin with a superior start, but they can also be further optimized through backpropagation, making
this an overall more effective method for training language models.

5.2 LANGUAGE MODEL FINE-TUNING WITH BIT-CIPHER

In addition to using bit-cipher as part of LM training, we find it’s also promising to use the algorithm
for efficient LM fine-tuning. The traditional finetuning process, which necessitates retraining the
model on a task-specific dataset, remains costly, leading to the exploration of zero-shot, few-shot,
and in-context learning strategies, prioritizing performance and efficiency. Although these methods
effectively extract useful features learned during training, there is a known trade-off; for instance,
prompted models do not always outperform fine-tuned models. Fine-tuned models, trained for a
specific purpose on one or a series of related datasets for a downstream task, typically achieve
state-of-the-art (SOTA) results.

A paradigm of fine-tuning that balances performance and training efficiency is desirable, allowing
for the deployment of numerous specific-purpose models with superior performance that are less
costly than training large models. In our method, we first train cipher embeddings on the fine-tuned
dataset to acquire what we term “cipher fine-tune embeddings”, then replace the embedding layer in
the pre-trained language models with these cipher-fine-tuned embeddings, designed with specific
fine-tune objectives. The efficiency of cipher training renders this step cost-effective, enhancing
overall model efficiency.

We selected three language models: TS, Roberta, and OPT, and fine-tuned them on the 10M dataset
provided by BabyLM (Warstadt et al., 2023)). (Gao et al.,[2021)) are conducted following a two-step
process: (1) Train cipher embeddings with the dataset used for the specific fine-tuning purpose.
(2) Replace the embedding layer of the language model designated for fine-tuning with cipher
embeddings. This approach enables models to converge more rapidly compared to traditional
methods, as illustrated by three training/dev curved5] showcasing the speed of fine-tuning that fine-
tuned model can quickly converge to low-enough training and developing losses which result in the
acceleration of fine-tuning process as well as the reduction of computational costs.

6 CONCLUSION

In conclusion, in this paper, we introduce Bit-cipher, a novel and efficient method of learning word
representations. By using this strategy, we acquire static pre-trained embeddings controlled by
dimensionalities set with bits and learn contextual information by simple vector addition, eliminating
the need for neural network training. Consequently, the model learns explicit statistical information
from large text with strong interpretability. Our results show that Cat models consistently outperform
Sum models across different dimensions and data sizes, demonstrating greater stability and superior
performance even when constrained to fewer bits. However, Sum models also show merit, especially
with the potential for further architectural improvements. Furthermore, by comparing with GloVe
and word2vec, the competitive performance of bit-cipher is further validated. Additionally, language
modeling experiments are conducted through both showing the efficacy of cipher as part of language
model training and an efficient alternative to the traditional fine-tuning process. Overall, we see
the bit-cipher as an efficient and high-performing alternative to classic pre-trained word embedding



methods, with significantly reduced costs, offering a unique niche in the LLM era based on efficiency
and interpretability—without performance compromise.
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A APPENDIX

In appendix, we documented all the probing experiments results of all the bit-cipher models we trained
both on POS tagging and NER with numbers in the tables are shown as accuracy with Fl-scores
shown in parentheses.

Table 2: Table for 60 Sum models of bit-cipher on POS tagging probing experiments

bits b=25 b=50 b =100 b =200
DataSize r=1 r=2 r=4 r=1 r=2 r=4 r=1 r=2 r=4 r=1 r=2 r=4
0.5B 8291 8270 81.23 84.35 83.67 83.17 84.42 84.67 83.67 8489 84.64 84.21

(83.08) (82.73) (80.85) (84.62) (84.02) (83.13) (84.52) (84.97) (83.91) (85.18) (84.87) (84.50)

1.0B 82.87 8236 8225 8452 83.88 83.52 85.89 8497 8425 8543 85.10 84.81
(83.04) (82.23) (82.21) (84.72) (83.95) (83.67) (86.19) (84.92) (84.32) (85.65) (85.40) (85.04)
2.0B 83.50 8291 81.75 84.55 84.01 83.25 8543 8492 8430 8542 8563 8545
(83.78) (82.89) (81.40) (84.71) (84.18) (83.37) (85.70) (85.04) (84.47) (85.71) (85.92) (85.71)
4.0B 83.83 83.07 82.00 84.85 84.32 83.53 85.65 85.64 84.61 8518 84.83 85.12
(83.87) (83.08) (81.87) (85.01) (84.50) (83.70) (85.90) (85.90) (85.00) (85.49) (84.87) (85.40)
8.0B 83.93 8285 8217 84.44 8434 8383 8477 8528 84.85 8536 86.20 85.67

(84.08) (82.74) (81.96) (84.68) (84.46) (84.08) (84.99) (85.52) (85.14) (85.20) (86.47) (86.04)

Table 3: Table for 60 Sum models of bit-cipher on NER tagging probing experiments

bits b=25 b=50 b =100 b =200
DataSize r=1 r=2 r=4 r=1 r=2 r=4 r=1 r=2 r=4 r=1 r=2 r=4
0.5B 91.50 89.08 89.12 89.60 89.53 89.12 89.59 89.78 89.94 89.47 89.74 92.35
(91.17) (89.24) (89.12) (89.95) (89.80) (89.12) (90.02) (90.38) (90.31) (90.03) (90.33) (92.35)
1.0B 89.44 8926 89.46 92.23 89.78 89.84 89.97 90.22 90.20 89.95 90.03 90.30
(89.75) (89.31) (89.69) (91.94) (90.11) (90.13) (90.41) (90.60) (90.61) (90.44) (90.56) (90.92)
2.0B 89.48 89.58 89.13 90.04 89.51 89.93 90.23 90.38 90.22 90.20 90.45 90.50
(89.74) (89.64) (88.75) (90.47) (89.55) (90.23) (90.81) (90.98) (90.70) (90.84) (90.91) (91.05)
4.0B 89.74 89.74 89.41 90.25 90.40 89.77 90.31 90.38 90.60 90.31 0.9042 90.64
(90.06) (90.01) (89.05) (90.69) (90.82) (90.10) (90.81) (90.96) (90.99) (91.01) (91.06) (91.25)
8.0B 89.97 89.64 89.32 90.50 90.31 90.61 90.65 90.71 90.82 90.63 90.72 90.67

(90.20) (89.56) (89.13) (91.03) (90.67) (91.07) (91.24) (91.30) (91.35) (91.27) (91.25) (91.32)

Table 4: Table for 20 Cat models of bit-cipher on NER tagging probing experiments

bits
data-size

25b (200d)

50b (400d)

100b (800d)

200b (1600d)

0.5B
1.0B
2.0B
4.0B
8.0B

§9.90 (90.48)
90.24 (90.81)
90.19 (90.49)
90.70 (91.22)
90.96 (91.51)

89.93 (90.45)
90.49 (90.93)
90.42 (91.00)
90.74 (91.14)
90.91 (91.62)

§9.90 (90.48)
90.31 (90.92)
90.44 (91.02)
90.60 (91.22)
90.80 (91.50)

§9.83 (90.34)
90.18 (90.61)
90.28 (90.85)
90.49 (90.99)
90.81 (91.25)
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Table 5: Table for 20 Cat models of bit-cipher on POS tagging probing experiments

bits 25b (200d) 50b (400d) 100b (800d) 200b (1600d)
data-size

0.5B 85.53 (85.88) 86.00 (86.29) 85.60 (85.81) 85.40 (85.75)
1.0B 85.81 (86.35) 85.71(85.89) 86.13 (86.44) 85.17(85.57)
2.0B 85.93 (86.06) 85.78 (86.24) 85.97 (86.17) 85.42(85.88)
4.0B 85.48 (85.95) 85.56(85.74) 85.92 (86.15) 85.53(86.04)
8.0B 86.05 (86.32) 86.19 (86.63) 86.16 (86.48) 85.93 (86.20)

Table 6: Table for 20 Cip models of cipher on its own on POS probing experiments

bits 25b 50b 100b 200b
data-size

0.5B 73.76 (71.43) 74.77 (73.08) 75.31(73.43) 75.21(73.56)
1.0B 73.65 (71.26) 74.27 (72.44) 74.64 (73.21) 75.86 (73.92)
2.0B 73.89 (71.50) 74.93(72.94) 75.49 (73.82) 75.69 (73.90)
4.0B 72.21 (69.63) 74.80(73.06) 74.93(73.21) 75.26 (73.68)
8.0B 72.72 (70.44) 75.02 (73.41) 75.22(73.46) 75.23 (73.58)

Table 7: Table for 20 Cip models of cipher on its own on NER probing experiments

bits
data-size

25b

50b

100b

200b

0.5B
1.0B
2.0B
4.0B
8.0B

85.02 (83.55)
84.20 (82.72)
82.76 (82.20)
85.22 (83.85)
85.17 (83.83)

85.64 (83.97)
85.58 (83.64)
85.75 (83.97)
85.66 (83.99)
85.54 (83.93)

85.80 (83.92)
85.68 (83.61)
85.75 (83.82)
84.83 (83.50)
85.90 (84.03)

85.83 (83.90)
85.75 (83.84)
86.04 (84.14)
85.98 (84.14)
86.19 (84.17)
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