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Abstract

Publication metadata help deliver rich analyses of scholarly communication. However,

research concepts and ideas are more effectively expressed through unstructured fields

such as full texts. Thus, the goals of this paper are to employ a full-text enabled method to

extract terms relevant to disciplinary vocabularies, and through them, to understand the

relationships between disciplines. This paper uses an efficient, domain-independent term

extraction method to extract disciplinary vocabularies from a large multidisciplinary corpus

of PLoS ONE publications. It finds a power-law pattern in the frequency distributions of

terms present in each discipline, indicating a semantic richness potentially sufficient for fur-

ther study and advanced analysis. The salient relationships amongst these vocabularies

become apparent in application of a principal component analysis. For example, Mathemat-

ics and Computer and Information Sciences were found to have similar vocabulary use pat-

terns along with Engineering and Physics; while Chemistry and the Social Sciences were

found to exhibit contrasting vocabulary use patterns along with the Earth Sciences and

Chemistry. These results have implications to studies of scholarly communication as schol-

ars attempt to identify the epistemological cultures of disciplines, and as a full text-based

methodology could lead to machine learning applications in the automated classification of

scholarly work according to disciplinary vocabularies.

Introduction

The bibliometric community has used scientific publications as an effective instrument to

study scholarly communication. Traditionally, bibliometric indicators were employed to assess

research impacts [1–3]. Recent advances in bibliometrics have benefited from the use of net-

work and statistical approaches to map science [4–6] and identify author communities [7–10].

Publication metadata, such as authors, journals, and references, were primarily used as the

unit of analysis in these prior endeavors. The use of a more content-rich component—full-

texts—was largely absent. Consequently, we made great efforts in examining research meta-

data but not research contents.
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The composition of the research landscape is evolving—data, particularly scientific data,

are increasing becoming open and accessible. The increased access to data not only provides

more efficient means of analyses, but also entails a paradigmatic shift in modes of inquiry

as scientists now can form diverse teams surrounded by data and conduct data-intensive

research. The success of this transformation requires the use of new methods to extract more

granular and content-rich information from large publication data. This need is within the

realm of information extraction since computational linguists have developed methods to

identify terms that can be used to describe domain-specific concepts from texts. While modern

natural language processing techniques have yielded satisfying results on recall and precision,

they were primarily employed with the objective of retrieval, as opposed to understanding.

Accordingly, systematic approaches are lacking on how to utilize these methods to understand

the latent meanings of the texts of scientific publications and how to use them to address ques-

tions on scholarly communication.

Thus, the objectives of this paper are two-fold. First, it is motivated to develop a term

weighting-based method to extract content-rich terms from full texts. These terms can be

broadly perceived as expressions in texts that convey information about the research-relevant

aspects of publications, such as methods, theories, and concepts. Second, it uses the extracted

terms to compare and contrast disciplines’ vocabularies—these vocabularies are important sig-

nifiers of disciplinary discourse patterns and can be used to reveal the epistemological differ-

ences in disciplinary cultures, as Hyland [11] argued that “writing. . .[o]n the contrary, it helps

to create those disciplines”. The newly developed term extraction method allows us to examine

the epistemological differences in a heretofore unattained extent, which complements the

scholarship of the language aspect of disciplinarity studies that were largely confined to analyze

samples of articles [12], dissertations [13], textbooks [14], and book reviews [15].

The paper provides insights into disciplinary vocabulary patterns and reveals scholarly

communication at a new contextualized level. Conducting content-rich disciplinarity studies

has the readily apparent advantage of gaining concrete and fine-grained perceptions of how

different scientific concepts are embedded and relate to each other. It also helps us obtain an

in-depth understanding of the production and dissemination patterns of scientific knowl-

edge, innovations, and influences. By automatically extracting large and disciplinarily specific

vocabularies, the satisfaction of this work’s goals also opens avenues for large-scale applica-

tions through algorithms that may use these rich lexica as feature inputs for machine

learning.

Literature review

Recent years have witnessed a growing interest in term extraction. The term extraction task is

concerned with two concepts, unithood and termhood. Unithood deals with the syntactics of

terms and is formally defined as “the degree of strength or stability of syntagmatic combina-

tions of collections” [16]. Termhood focuses on the semantic representation of terms or in

Kageura and Umino’s words “the degree that a linguistic unit is related to. . .domain-specific

concepts” [16]. Scholars have employed both linguistic and statistical methods to extract terms

with unithood and termhood in mind from a variety of textual genres, such as email corre-

spondences [17], scientific publications [18], and the Web [19]. Applications range from bio-

informatics to studies of political parties [20]—giving rise to a new research area called named

entity recognition and classification (NERC) [21]. Named entities encompass a variety of

actors and artifacts such as people, locations, organizations, and biomedical entities. Three

types of NERC methods are present: unsupervised, semi-supervised, and supervised. They are

introduced in this section.
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Unsupervised methods use lexical resources (e.g., WordNet or Web queries) [22, 23] and

lexical patterns (e.g., the “such as” pattern) [21] to extract named entities. This approach has

advantage because it provided a high-level validity of unithood. As for termhood, scholars

have differentiated the weight of noun phrases according to certain measures, such as an

entropy-based index [24], a context-based term weighing method [25], or a uniqueness-based

indicator that compares word frequencies between scientific and non-scientific corpora [18,

26]. The idea behind the uniqueness-based indicator (a.k.a “weirdness”) is that terms in scien-

tific and non-scientific corpora have disparate frequencies, making it is possible to use stan-

dard non-scientific corpora, such as the British National Corpus, to filter technical terms from

scientific corpora [18, 26]. Reports of high precision [18] suggest potential for this method in

applications to domain-independent corpora.

Semi-supervised methods typically use a bootstrapping technique. This technique recur-

sively learns the contextual patterns of a small number of seed terms and uses the learned pat-

terns to select new terms. Bootstrapping is an “effective, interpretable” [27] method and has

performed well at extracting domain-dependent terms relating to terrorism [28], law [29], and

medicine [30]. Supervised methods primarily include maximum entropy models [31], support

vector machines [32], decision trees [33], hidden Markov models [34], and conditional ran-

dom fields [35, 36]. These methods perform well, and extract named entities using labeled data

[37]. However, requirements for large training data with entity-class associations result in a

high complexity of O(D×R), where D is the number of documents and R is the number of rela-

tions [19]. Thus, developing Web-scale, domain-independent methods is recognized as a pri-

ority in the NERC community. Milestone events in this vein of research include the KnowItAll

[19] and TextRunner systems [38]. KnowItAll was the first published domain-independent

system, according to Etzioni, Banko [19]. The performance of the system, however, was

impeded by the high volumes of Web query requests and the system-wide adjustment every

time a new relation was added. TextRunner resolved these scalability issues and is seen as a

“fully implemented” open information extraction (OIE) system [19]. It supported the discov-

ery of new entity-class associations and reduced the complexity to O(D).

Methods and data

Term extraction

This paper employs a new term extraction method for full-text scientific copra developed in

our prior research [39]. The method processes texts through StanfordNLP for lemmatization

and part-of-speech (POS) tagging. Original texts, lemmas and POS tags then go through the

POS matching procedure to identify possible terms, i.e., candidates, which can be a word or a

phrase of multiple words. Candidates are further scored by our term extraction algorithm,

which will be discussed in the following paragraphs. After POS tagging, each word is associated

with a POS tag (Penn Treebank: [40]). POS tag sequences are matched by POS patterns. We

chose the following pattern to match candidate terms: (({JJ}|({NN}[{VBG}|{VBN}]?)|{CD})

+{IN})?({JJ}|({NN}[{VBG}|{VBN}]?)|{CD})�{NN}, where JJ denotes adjectives, NN denotes

nouns, VBG denotes verbs in gerund or present participle, VBN denotes verbs in past partici-

ple, CD denotes cardinal numbers, and IN denotes prepositions. This pattern is selected based

on our heuristic observations that valid terms are a combination of nouns, prepositions, adjec-

tives, and verbs in present or past participles. Table 1 shows several examples of terms

extracted by this pattern.

This pattern is capable of including as many POS structures as possible; however, because it

is designed to maximize recall, the candidate terms are considerably noisy (see the last two

examples in Table 1). To select valid terms from these candidates, formula (1) is adopted to
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score each candidate.

scoredðxÞ ¼ CdðxÞ �W1ðxÞ �W2ðxÞ

In formula (1), Cd(x) is the C-Value formula given by Frantzi, Ananiadou [25], and W1(x),

W2(x) are our weighting functions. C-Value relies on features such as term lengths and docu-

ment-level frequencies. These features, however, cannot effectively distinguish scientific con-

cepts from ordinary expressions. Thus, we propose an extension to include two types of

frequency lists in scoring to improve performance.

We define the type I frequency list as a list of word frequencies acquired from a non-scien-

tific corpus, for example, news articles and novels. In this work, we obtain a type I list from

the Project Gutenberg eBooks repository for our method (https://en.wiktionary.org/wiki/

Wiktionary:Frequency_lists/PG/2006/04/1-10000). We then employed the sigmoid function

to weigh down candidate terms that contain high-ranking words in the type I reference list.

W1 xð Þ ¼

P
o2xð

1

1þe
r0 � ro

s1
� a1Þ

ð1 � a1Þjxj

where ω is a word in the term x, and rω is the rank of ω in the type I frequency list. If ω is not

in the list, we let rω = +1. g oð Þ ¼ 1

1þe
r0 � ro

s
is a sigmoid function. r0 is a constant that controls

when the function takes value 0.5. For example, if r0 = 4000, then g(ω) = 0.5 if rω = 4000, mean-

ing a word ranked 4000 in the frequency list will be mapped to a sigmoid value 0.5. The other

constant s1 controls the function’s rate of increasing with respect to rω. An increase of s1 will

make the sigmoid increase slower, and a decrease of s1 will make the sigmoid increase faster.

a1 ¼
1

1þe
r0
s1

which is used to normalize W1(x) between 0 and 1. This reflects the idea of unique-

ness of scientific terms—top words in daily language tend not to appear in them.

We define a type II frequency list as a list of word frequencies from a scientific terminology

dictionary. For some words, such as “protein” and “behavior”, there presence in a candidate

boosts the likelihood of them being a scientific term. Moreover, we observe that the position of

a word in a term can also be used to determine the likelihood. For example, the word “central”

is unlikely to appear at the end of any valid term and the word “theory” tends to tail valid

terms. A second weighting function is designed as:

W2 xð Þ ¼ 1þ

P
o2x ð

1

1þe
f0 � fo

s2

� a2Þ � 1 � bjp oð Þ � �p oð Þjð Þ

� �

ð1 � a2Þjxj

where ω is a word in the term x, and fω is the frequency of ω in the type II frequency list. If ω is

not in the list, we let fω = 0. Similar to W1(x), h oð Þ ¼ 1

1þe
f0 � fo

t
is also a sigmoid function. s2 is a

Table 1. Examples of extracted terms using the defined POS pattern.

POS tag sequence Extracted terms

JJ NN NN mesenchymal stem cell

NN JJ NN mouse embryonic fibroblast

NN IN NN mutation in gene

VBG NN cold-seeking response

NN VBN NN hiv-2 uninfected individual

NN JJ NN brand new innovation

NN IN NN people with history

https://doi.org/10.1371/journal.pone.0187762.t001
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slope parameter as described before for W1(x). Also we let a2 ¼
1

1þe
f0
s2

for the purpose of nor-

malization. We define the normalized position (NP) of a word ω in x as its zero-based position

in x divided by |x|−1, the length of x minus one. For example, in term “central limit theorem”,

“central” is at position 0 and is of NP 0, “limit” is at position 1 and is of NP “0.5”, and “theo-

rem” is at position 2 and of NP “1”. �pðoÞ is the average normalized position of word ω of all

terms that generate the type II frequency list. As a result jpðoÞ � �pðoÞj is a deviation of ω’s

position in x from ω’s average position in the terminology dictionary, or simply the position

disagreement, and 1 � jpðoÞ � �pðoÞj is the position agreement. In addition, β 2 [0,1] is a

weighting parameter that controls on what level position disagreement affects W2(x).

A comprehensive type II reference list is relatively less available than a type I list. We rec-

ommend the use of acronyms to build up a type II list. Currently, the type II list is constructed

from the literature itself based on recognized acronyms. About 10 thousand acronyms were

recognized from our PLoS ONE corpus by using a simply rule-based approach (i.e., the exis-

tence of title case capitalization and parentheses) and we used these acronyms to build a type

II list. It is worth noting that this term extraction method gives a higher score to words on the

type II list and can find terms outside of this list. The benefit of using a type II list is that it can

be considered comprehensive or well-rounded with respect to the literature corpus we analyze,

and it reduces the method’s dependence on external resources.

Our method is advantageous because it does not rely on any corpus-level features such like

document frequency, and thus it is able to process publications without first processing the

whole corpus. We showed in [39] that our term extraction method outperformed the state-of-

the-art, C-Value method and summarize this key finding in Table 2.

Precision in Table 2 refers to the ratio of the number of technical relevant terms among the

top 20 extracted terms over all top 20 terms. Three human coders conducted the evaluation

over 50 documents; a term is considered as a non-technical relevant term when a consensus

was reached among all three coders. Recall refers to keyword recall; we used keywords as the

gold standard when evaluating recall of the three methods. We see from the evaluation results

that our method improved precision by 15% when scored(x) = cd(x) × W1(x) was used and by

17% when scored(x) = cd(x) × W1(x) × W2(x) was used. In regards to recall, our method (scor-
ed(x) = cd(x) × W1(x) × W2(x)) boosted the recall by 18% compared with the C-Value method.

Data

The dataset used in this paper contains 52,981 PLoS ONE articles published between 2006 and

2015. The access point to the corpus is provided by PLoS ONE (http://www.plosone.org/

google/index.html) and it is freely accessible to the public. For each article in the dataset, we

applied the designed term extraction method and selected top 40 terms based on scored. In

total, we collected 532,725 unique terms from the dataset.

To examine disciplinary vocabularies, papers in the dataset need to be grouped into appro-

priate disciplines. PLoS has a classification scheme that assigns a paper to two or more research

areas. We noticed that some research areas are quite similar and thus reclassified the research

areas into 12 broader disciplines based on research similarities (Table 3).

Table 2. Evaluation results.

C-Value W1 Weighted W1 W2 Weighted

Precision 0.8170 0.9390 0.9520

Recall 0.4230 0.4670 0.4990

https://doi.org/10.1371/journal.pone.0187762.t002
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Multi-counting was adopted in that a paper is counted in each discipline it was assigned

into (see S1 Table for the summary of papers with multiple-subject assignments). For instance,

a paper assigned into Biology and life sciences and Chemistry in the original scheme was

counted once in Biology and once in Chemistry in the reclassified scheme. The advantage of

this counting method is that it avoids counting a paper in an arbitrary discipline [41]. The

caveat, however, is that it blurred the disciplinary boundaries and we should be cautious when

interpreting results on interdisciplinarity. Another limitation of the employed classification

scheme is that despite PLoS ONE’s multidisciplinary scope, this journal has a more extensive

coverage on biomedical-related topics. This has raised a dilemma to us: on the one hand, we

are interested to include in our analysis more representative domain-specific journals; on the

other hand, most domain-specific journals outside biomedicine are not open access and thus

would hinder the study’s reproducibility. As more journals are having open access options, we

see the use of open access, domain-specific journals to examine disciplinary vocabularies as a

future research direction.

Results

An overview of disciplinary vocabularies

Table 4 shows the number of publications, number of unique terms, and terms per paper for

each discipline.

While Biology and Medicine had the highest numbers of unique terms, Engineering

possessed the highest terms per paper (tpp = 35.70). Other disciplines that resulted in high

terms per paper include Agriculture (tpp = 20.52), Mathematics (tpp = 19.11), and Physics

(tpp = 18.30). The result suggests that these disciplines tended to use nomenclatures more

frequently in texts. Meanwhile, Computer and Information Sciences (tpp = 8.05) and Social

Sciences (tpp = 8.96) yielded the lowest terms per paper. The result that Computer and Infor-

mation Sciences had fewer terms per paper comes as a surprise, because this field is often seen

as technology-driven. Thus, it is expected that it pertains to more frequent uses of technical

terms—similar to the case of Engineering. It is possible that given PLoS ONE’s multidisciplin-

ary nature, papers accepted by it in the area of computer science are primarily on the applica-

tion track and used fewer technical terms than those on the theory and method tracks that are

often published in domain-specific journals and conference proceedings.

Table 3. Reclassification of PLoS subjects.

Reclassified disciplines Original disciplines

1 Agriculture Agriculture

2 Biology Biology; Biology and life sciences;

Biology and life sciences; Veterinary science

3 Chemistry Chemistry

4 Computer and Information Sciences Computer science; Computer and information sciences

5 Earth Sciences Earth sciences

6 Ecology and Environmental Sciences Ecology and environmental sciences

7 Engineering Engineering and technology; Engineering; Materials science

8 Mathematics Mathematics

9 Medicine and Health Sciences Medicine and health sciences; Medicine

10 Physics Physics; Astronomical sciences; Physical sciences

11 Research and Analysis Methods Research and analysis methods

12 Social Sciences Social sciences; Social and behavioral sciences;

People and places; Science policy

https://doi.org/10.1371/journal.pone.0187762.t003
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To gain an understanding of the basic research themes of each discipline, we show top

terms of each discipline. We first calculated the ratio of the occurrence of a term in one disci-

pline against its occurrences in all 12 disciplines. This ratio helps bring terms that have a more

salient association with certain disciplines. We then set up a threshold of 1,000 documents,

meaning that a term needs to occur in at least 1,000 documents to be considered as top terms.

Finally, we ranked the ratios in the descending order, with results shown in Table 5.

Table 5 shows that the designed term extraction method is able to identify both words and

phrases from texts. These words and phrases are capable of depicting the general research

themes of each discipline. For instance, Computer Science examines algorithms and networks;

Table 4. Descriptive statistics of the 12 disciplines.

Disciplines No. of publications No. of unique terms Terms per paper (tpp)

Agriculture 2,047 42,005 20.52

Biology 41,136 497,492 12.09

Chemistry 12,530 195,853 15.63

Computer and Information Sciences 8,356 67,296 8.05

Earth Sciences 1,676 29,971 17.88

Ecology and Environmental Sciences 7,638 117,838 15.43

Engineering 2,866 102,327 35.70

Mathematics 2,793 53,372 19.11

Medicine and Health Sciences 25,068 368,896 14.72

Physics 4,773 87,349 18.30

Research and Analysis Methods 3,089 33,764 10.93

Social Sciences 7,514 67,328 8.96

https://doi.org/10.1371/journal.pone.0187762.t004

Table 5. Top 10 terms of each discipline.

Agriculture Biology Chemistry Comp Earth Ecology

1 seedling chromatin SDS-PAGE algorithm ecosystem biodiversity

2 molecular marker chromatin immunoprecipitation mutant protein node environmental variable predation

3 transcriptome wnt phospholipid dataset biomass habitat

4 cm zebrafish cysteine database biodiversity ecosystem

5 nutrient histone ion functional annotation nutrient environmental variable

6 genetic diversity dorsal fusion protein simulation habitat biomass

7 functional annotation transcriptional regulator recombinant protein matrix predation conservation

8 genome sequence chromosome protease equation China nutrient

9 biomass phylogenetic analysis tyrosine dynamics gradient mammal

10 cellular component recombination proteasome parameter cm genetic diversity

Engineering Math Medicine Physics Research Social Sciences

1 seedling equation CD8 T cell equation heterogeneity SD

2 laser algorithm CD4 dynamics follow-up variable

3 algorithm dynamics CD4 T cell orientation meta-analysis evaluation

4 electron node T cell voltage injection sensitivity

5 ph parameter follow-up ligand questionnaire ANOVA

6 fusion protein dataset HIV microtubule diagnosis questionnaire

7 voltage simulation morbidity simulation diabetes mellitus impact

8 ml heterogeneity IL-10 ion consensus meta-analysis

9 gel regression coefficient vaccination node metabolic syndrome respondent

10 PCR amplification matrix diagnosis radiation OR feedback

https://doi.org/10.1371/journal.pone.0187762.t005
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Earth Sciences is centered with environmental studies; Ecology focuses on biodiversity and

conservation, Medicine discusses T cells and vaccinations; and Social Sciences seem to cover

topics on both qualitative and quantitative research methods.

Term distributions

In this subsection, we show the distributions of terms over disciplines (Fig 1) and documents

(Figs 2 and 3). Fig 1 illustrates the numbers of terms that occurred in one or more disciplines.

Note no term was found only in one discipline because papers were assigned to at least two dis-

ciplines in PLoS ONE.

More than 40% of the terms (223,512) were associated with two disciplines and as the num-

ber of disciplines increases, the number of terms declines. There are 1,340 terms (0.25%) that

occurred in all 12 disciplines. Among these, the following terms are the ones with the highest

document-level occurrence (document-level occurrences in parentheses): gene (33,594), pro-

tein (23,143), antibody (18,709), USA (14,180), enzyme (12,855), and apoptosis (12,356).

Meanwhile, for terms that only occurred in two disciplines, those with the highest document-

level occurrence are CD27 (51), CD8 t-cell response (48), tetramer staining (27), pulmonary

macrophage (26), centrosome amplification (24), and hematopoietic stem cell transplantation

(24). We can see that terms in the latter group are more granular.

Fig 2 shows the distribution of terms over documents in a log-log scale. The y-axis shows

the number of documents a term occurs and the x-axis shows the order of terms, from the

term that occurs in the highest number of documents to the terms that occur in just two

documents.

Fig 1. The distribution of terms in disciplines.

https://doi.org/10.1371/journal.pone.0187762.g001
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A power law pattern is visible in Fig 2 because of the linear distribution between the num-

ber of documents and the rank of terms in the log-log scale with base 10. This pattern shows

that while most terms only occurred in a small number of documents, some terms occurred in

most documents [42], such as gene, protein, antibody, USA, enzyme, apoptosis, and genome

that occurred in more than 10,000 documents. In the meantime, there are 202,536 terms that

only occurred in two documents.

We now zoom in to examine the term document distribution in each discipline. Fig 3

shows the distributions of terms over documents for all 12 disciplines in a log-log scale with

the same axis compositions.

Distributions in Fig 3 share a similar pattern with Fig 2 in that there is a power law relation-

ship between the number of documents and the rank of terms. Curves’ slopes are consistent,

exhibiting a parallel form among the curves. The difference, however, is the intercept on the y-

axis: Biology, for instance, had the largest number of terms and documents and thus has the

highest intercepting value; Earth Sciences, on the other hand, has the lowest intercepting

value.

Cross-discipline vocabulary similarities

We employed a principal component analysis (PCA) to measure disciplines’ similarities based

on the vocabularies disciplines used in scientific publications. The PCA was applied to a 12 by

532,725 discipline-term matrix where each cell contains the number of occurrences of a term

in a discipline. The largest two components in PCA accounted for 97.8% of the total variance

(95.4% and 2.4% respectively) and they are visualized in Fig 4.

Fig 2. The rank-frequency distribution of terms in documents.

https://doi.org/10.1371/journal.pone.0187762.g002
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Several observations can be made regarding the PCA plot. First, all domains are located in

the first and fourth quadrants because the loadings for each domain in the first component is

non-negative. Second, Mathematics, Medicine and Health Sciences, Research and analysis

methods, and Social Sciences are in the first quadrant, while the other domains are in the

fourth quadrant. Third, Ecology, Earth Sciences, and Agriculture are closely located in the

fourth quadrant. Also closely located in the fourth quadrant are Computer and Information

Sciences, Engineering, and Physics. Fourth, Biology, Chemistry, and Medicine are seemingly

far part on the plane, but because the first component accounted for more than 95% of the

total variances, the three domains are in effect closely located when projecting them on the x-

axis. This close relationship can be seen more clearly in Fig 5 where only the first component

is visualized. Numbers before the domain names are their ranks projected on the x-axis in that

Earth Sciences (0.01, 0) is the closest to the origin and Biology (0.80, 0) the furthest.

To show the loadings of the first two components, we provide a stacked bar chart (Fig 6).

For consistency, the same color coding of Fig 3 is used for Fig 6.

Fig 3. The rank-frequency distribution of terms in documents for 12 disciplines.

https://doi.org/10.1371/journal.pone.0187762.g003
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Biology has the largest loading in the first component, followed by Medicine, and Chemis-

try. Meanwhile, Earth Sciences, Research and Analysis Methods, and Social Sciences have the

smallest loadings in the first component. The results indicate the dominant role of biochemical

terms in the first component, which is not surprising given that a large percentage of PLoS
ONE publications are classified under Biology, Chemistry, or Medicine. Besides these three

domains, Ecology, Engineering, and Physics also made noticeable contributions to the first

component. The first component, therefore, is led by biochemistry and physical sciences.

While all domains’ loadings are non-negative in the first component, only four domains’ load-

ings are non-negative in the second component (Mathematics, Medicine, Research and Analy-

sis Methods, and Social Sciences) and others’ have negative loadings. The fact that Medicine

has the largest loading while Biology and Chemistry have the largest negative loadings show

that the latter two domains are more closely related through their use of terms from Medicine.

This difference, however, is very subtle, due to the small variances the second component

contributed.

Fig 4. The plot of the first two components of the principal component analysis.

https://doi.org/10.1371/journal.pone.0187762.g004

Fig 5. The plot of the first component of the principal component analysis.

https://doi.org/10.1371/journal.pone.0187762.g005
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Discussion

When we projected the 12 domains on the first component, we obtained a discipline similarity

chain: Earth Sciences->Research and Analysis Methods->Social Sciences->Mathematics-

>Agriculture->Computer and Information Sciences->Physics->Ecology and Environmental

Sciences->Engineering->Chemistry->Medicine and Health Sciences->Biology. We compare

the chain with the “consensus map” in [43], which was created by merging 20 existing science

maps and identifying the general proximity patterns of disciplines: starting from mathematics,

there are “physics, physical chemistry, engineering, chemistry, earth sciences, biology, bio-

chemistry, infectious diseases, medicine, health services, brain research, psychology, humani-

ties, social sciences, and computer science”.

A few similarities can be identified between the term occurrence map (i.e., the chain) and

the consensus map: in the consensus map, social science and computer science are collocated

and in the term occurrence map, Social Sciences and Computer and Information Sciences are

also closely located to each other, separated by two domains Mathematics and Agriculture.

Physics, engineering, and chemistry are collocated in the consensus map while Physics, Ecol-

ogy, Engineering, and Chemistry are collocated in the term occurrence map. In the consensus

map, biology and a few medical science domains are collocated while in the term occurrence

map, Medicine and Biology are collocated. A few differences can be found, which are under-

stood through two main factors: first, the PCA plot obtained from this study is based on 12

broad knowledge domains whereas previous science maps were based on more-granular units,

such as the 27 Scopus major subject areas [44], 220 Web of Science subject categories [45],

thousands of journals [5, 46], or millions of documents [47]. The more-granular units pro-

vided the possibility of using richer dimensions to depict the similarity between scientific

fields. Second, previous science maps were created upon article- or journal-level co-citation

relationships, whereas the plot in Fig 4 was created through discipline-level term occurrence

relationships.

Fig 6. Stacked loadings of the first two components.

https://doi.org/10.1371/journal.pone.0187762.g006
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This paper found several disciplinary vocabulary use patterns. While Engineering tended to

use nomenclatures more frequently in texts, Computer and Information Sciences and Social

Sciences had the lowest numbers of terms per paper. In addition, based on a principal compo-

nent analysis, this paper found that Mathematics and Computer and Information Sciences had

a similar vocabulary use pattern, as did the pairing of Engineering and Physics. According to

Carnap [48], disciplines in each of the abovementioned pairs pertained to “a very narrow and

homogeneous class of terms of the physical thing-language”. Meanwhile, Chemistry and Social

Sciences exhibited contrasting vocabulary use patterns, as did Earth Sciences and Chemistry.

The results may have implications to studies of scholarly communication as scholars attempt

to identify the epistemological cultures of disciplines [11], find disciplinary knowledge paths

[49, 50], promote interdisciplinary research and collaborations [51], and design effective indi-

cators to assess research outputs [52].

The term extraction method developed in this paper complements current work in co-

word analysis. Co-word analysis can be very useful in portraying the cognitive space of a vari-

ety of disciplines [53, 54]. It is predicated upon a few assumptions [55]: keywords symbolize

“non-trivial relationship between their referents” and indexers assign reliable keywords to

refer to scientific concepts. In reality, however, due to the so-called “indexer effect” [56, 57],

these assumptions may not be fully met, and the performance of co-word analyses may be

impaired. To alleviate this tension, there is a growing interest of using title or abstract words

instead of keywords [58]. The choice over title and abstract words may grant a “more direct

access to the view of authors” [55] and may create a richer content to extract scientific concepts

and ideas. The presented term extraction method can provide further refinement to co-word

analysis from two aspects: first, this method is capable of extracting noun phrases—this holds

clear advantage over single word-based extraction because many scientific concepts contain

more than one word. Second, because of its weighting mechanism, the presented method can

be applied to full texts that are richer in content and the extracted terms of a paper are weighed

and ranked and the most distinctive terms can be used in co-word analysis.

Conclusion

This paper employed an efficient, domain-independent term extraction method to extract dis-

ciplinary vocabularies from a large multidisciplinary corpus of PLoS ONE publications. The

employed method can effectively extract content-rich terms from unstructured bibliometric

fields such as full texts used in this study. Extracted terms can help researchers and practition-

ers contextualize findings and make sense of bibliometric indicators and numbers. Examina-

tions of the extracted terms can help reveal the scholarly communication at a new granular

level and address questions on the provenance, diffusion, coevolution, trend, and impact of

knowledge at a much improved extent and depth. Analyzing and modeling content-rich terms

also complements the state-of-the-art data infrastructure that orients towards network analysis

of publications [6, 59–61]. In addition, this paper also found a power law pattern of the distri-

bution of terms over documents: a small number of terms occurred in most documents while

most others only occurred in a limited number of documents. This distribution pattern was

also present for documents in each discipline, indicating the existence of a large and natural

quantity of discipline-specific terms sufficient to application of statistical analyses machine

learning algorithms.

Developing effective term extraction methods applicable to the full texts of scientific litera-

ture is the first step of a greater effort to enable content-aware bibliometric research. Next step

will likely include the design and application of automated methods to induct taxonomies to

organize extracted terms, in addition to the development of statistical methods and machine
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learning algorithms that may leverage extracted terms to automatically classify the ever-grow-

ing scientific literature. Thus, in the context of increasing interdisciplinarity, this effort should

have long-term benefits to knowledge management and information retrieval. Future work

will also include the employment of statistical- and network-based methods to understand the

lifecycle of innovations as codified by content-rich terms.
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