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Abstract

The development of state-of-the-art (SOTA)
Natural Language Processing (NLP) systems
has steadily been establishing new techniques
to absorb the statistics of linguistic data. These
techniques often trace well-known constructs
from traditional theories, and we study these
connections to close gaps around key NLP
methods as a means to orient future work. For
this, we introduce an analytic model of the
statistics learned by seminal algorithms (in-
cluding GloVe and Word2Vec), and derive in-
sights for systems that use these algorithms
and the statistics of co-occurrence, in gen-
eral. In this work, we derive—to the best of
our knowledge—the first known solution to
Word2Vec’s softmax-optimized, skip-gram al-
gorithm. This result presents exciting potential
for future development as a direct solution to a
deep learning (DL) language model’s (LM’s)
matrix factorization. However, we use the
solution to demonstrate a seemingly-universal
existence of a property that word vectors ex-
hibit and which allows for the prophylactic dis-
cernment of biases in data—prior to their ab-
sorption by DL models. To qualify our work,
we conduct an analysis of independence, i.e.,
on the density of statistical dependencies in co-
occurrence models, which in turn renders in-
sights on the distributional hypothesis’ partial
fulfillment by co-occurrence statistics.

1 Motivation

Suppose one wished to randomly optimize a Rube
Goldberg machine (RGM) over many Dominoes
with the intent of accomplishing a small down-
stream task. Should the RGM be initialized to a
random state, with dominoes scattered haphazardly,
i.e., with no prior? Or would it help more to con-
strain the RGM to initializations with all dominoes
standing on end? Perhaps less effort could be used
to modify the dominoes-on-end state for the goal—
but that depends on the goal and how dominoes can
be used to transfer energy over long ranges.

Pre-trained models are often used as initializa-
tions, eventually applied to downstream NLP tasks
like part-of-speech tagging or machine translation.
This means model pre-training is a lot like initial-
izing an RGM to a highly-potentiated state, while
retaining a flexibility/generality to optimize sharply
for the diversity of phenomena which can depend
on statistical, linguistic information. A challenge
partly met by big data pre-training is with the need
for models to remain useful on a large diversity of
data and tasks. Under the RGM theory, pre-training
over big data simply potentiates more dominoes,
in more-usefully correlated ways, where ‘useful’
is hands-off defined by a model’s parametric abil-
ity to explain language, i.e., which words were
where. However, if we knew how many dominoes
should be on end at the start and how many domi-
noes should be in configurations that make stairs,
etc., it seems plausible to initialize the RGM with
distributionally-useful tools, given what we know
about how humans use dominoes to transfer energy,
i.e., the statistics of how humans use vocabularies
to communicate. We investigate these questions,
replacing ‘domino’ with ‘parameter’, and lay the
groundwork for provisioning statistical priors to
efficiently meet model pre-training needs for future
research, while uncovering a cost-effective method
for probing the biases that DL models will learn if
they train on specific data.

2 Introduction

GPT-3 is an off-the-shelf AI that is perhaps the
pinnacle of LMs, and compared to GPT-2, was ba-
sically just trained on more data and with more pa-
rameters. The data that trained GPT-3’s SOTA un-
supervised machine translation performance were
simply an “unfiltered distribution of languages
reflected in internet text datasets” (Brown et al.,
2020). To uncover how a blend of training data like
this aligns the semantics of, e.g., French and En-
glish vocabularies requires explaining what (statis-
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tically) NLP tasks are teaching to SOTA algorithms,
e.g., via the language modeling or masked language
modeling tasks. However, while off-the-shelf AIs
like GPT-2 are becoming ubiquitous in applications,
they’re also being shown to contain dangerous bi-
ases that emerge from training data (Wallace et al.,
2019; Heidenreich and Williams, 2021).

2.1 Related Work

Within the last decade, there have been major
shifts in representation learning from context-
independent word vectors (Mikolov et al., 2013a,b;
Pennington et al., 2014), to context-dependent
word representations (Howard and Ruder, 2018;
Peters et al., 2018), to pre-trained language models
(Devlin et al., 2019; Radford et al., 2018, 2019).
These trends have been accompanied by large ar-
chitectural developments from the dominance of
RNNs (Hochreiter and Schmidhuber, 1997), to the
appearance of attention (Bahdanau et al., 2015)
and the proliferation of the Transformer architec-
ture (Vaswani et al., 2017). Our work seeks to open
a path towards the efficient engineering of SOTA
NLP technologies. We aim to compute the natural
statistics to which model parameters converge, and
towards this our work analyzes the older, static-
representations that preceded large LMs.

Despite gains on empirical benchmarks, recent
works suggest surprising findings: word order may
not matter as much in pre-training as previously
thought (Sinha et al., 2021), random sentence en-
codings are surprisingly powerful (Wieting and
Kiela, 2018), one can replace self-attention opera-
tions in BERT (Devlin et al., 2019) with unparame-
terized Fourier transformations and still retain 92%
of the original accuracy on GLUE (Lee-Thorp et al.,
2021), and many modifications to the Transformer
architecture do not significantly impact model per-
formance (Narang et al., 2021). There’s no denying
increases in empirical performance, but these con-
founding results raise questions about these models
and the processing needed to perform NLP tasks.

3 Harmonically-Distributed Data

Historically, research has naïvely approached the
characterization of language statistics by counting
the occurrence of symbols. While occurrence fre-
quency can be measured at different levels, e.g.,
characters, tokens, or phrases, a statistical ubiquity
was discovered early on for tokens—specifically
the harmonic relationship which exists in the usage

of a document’s vocabulary (Zipf, 1935, 1949). To
understand the harmonic relationship, suppose a
vocabulary V of ∣V ∣ = N distinct types is used to
convey a collection of documents,D, containingM
tokens. A harmonic analysis of D first ranks each
t ∈ V with a positive integer rt that sorts the vocab-
ulary from high-to-low by frequency. Intuitively a
rank, rt indicates the number of other types which
occur at least as often as t (without loss of gener-
ality). Via this ranking, the empirical occurrence
frequency for any type, ft, can be mathematically
approximated by harmonically-proportioned val-
ues: ft ≈ N ⋅ r−1t , where N scales models to have
least-frequent types occur once. Crudely, harmonic
distributions describe the bulk of statistical struc-
ture in token-frequency distributions.

3.1 Co-Occurrence and Context

Token co-occurrence matrices, i.e., co-frequency
distributions, measure the number of times tokens
appear, but specifically, ‘near’ one another. In
general, for types t and s, we denote the occur-
rence of s in a fixed window of size ±m tokens
around t across a collection, D, by Fmt,s. Most
of the seminal representation-learning algorithms
(including LSA, Word2Vec, and GloVe) rely on
such empirical,m-sampled ‘data’ of co-occurrence.
Here, it’s important to note that totality in co-
occurrence distributions is dependent on the size of
the context window, i.e., co-occurrence marginal-
ization, which we denote by Mm

F , exhibits how
the distribution ‘inflates’ with larger values of m:
Mm
F = ∑t,s∈V F

m
t,s = O (2mM). This m-window

inflation thus slightly re-defines unigram statistics
along marginals, denoted: fmt = ∑l∈V F

m
t,l .

Generally, word co-occurrences define a specific
family of word-context joint-distributional mod-
els, or, context distributions, which can be tuned,
e.g., to count only forward, backward, or any un-
centered ‘windows’ of context. These can likewise
be generalized to n-gram context models (Pianta-
dosi et al., 2011). While the over-counting effects
of co-occurrence and n-gram contexts can be al-
leviated to form integrated higher-order models
via weighted context distributions (Williams et al.,
2015), no representations have to-date used these
models. Here, our work is again retrospective, fo-
cusing on building solid foundations from the stan-
dard, symmetrically-centered word co-occurrence
model of context, which has been used across the
seminal word vector-learning algorithms.



4 Representation and Co-Occurrence

Harmonic distributional structures have long been
observed, but applications of them to NLP systems
have largely not emerged. We can juxtapose this
lack of application to the transformative impact on
NLP by representation learning’s embeddings, or,
word vectors. These allow modern DL systems
to approximate the meanings of tokens. Since La-
tent Semantic Analysis (LSA) was introduced (Du-
mais et al., 1988), vector representations of tokens
have been used to predict and retrieve synonyms
and analogies (Mikolov et al., 2013a,b; Pennington
et al., 2014). The fact that word vectors exhibit
linear semantic relationships between tokens, i.e.,
predict analogies, is heralded as a success in their
capture of meaning, but exists without solid un-
derstanding of how these meanings are captured.
LSA has influenced theories about human cogni-
tion (Landauer and Dumais, 1997) and been used
to measure association of concepts during free re-
call (Howard and Kahana, 2002; Zaromb et al.,
2006). Word vectors are limited in representing
polysemous words. However, as demonstrated in
(Arora et al., 2018), polysemous words lie in a su-
perposition of their senses within a linear semantic
space, and one can approximately recover underly-
ing sense vectors (Arora et al., 2018).

4.1 Modeling Co-Occurrence
The statistical dynamics of co-occurrence strongly
depend on the hyper-parameter m, whose effect
can be seen from a low-complexity model. Specif-
ically, one can crudely sample from an empirical,
harmonic-frequency distribution to retain some re-
alistic structure. To compute a model F̂m for a doc-
ument collection, D, a token t samples ft windows
of ±m other tokens s that are also distributed by f .
This makes the sampling proportional to frequency
ratios with t: F̂mt,s = Ctfs/ft. To physicalize the
model, one need only assert: ∑s∈V F̂mt,s = 2mft and
solve for the constant of proportionality, 2mf2t /M ,
allowing for a closed-form specification:

F̂mt,s =
2mftfs
M

(1)

We refer to Eq. 1 as the independent frequencies
model (IFM), which forms a dense co-occurrence
matrix that is computable from any set of unigram
frequencies. To view this model, we present Fig. 1,
which exhibits the IFM against co-occurrences of
the word ‘they’ in the Georgetown University Mul-
tilayer (GUM) Corpus (Zeldes, 2017).

4.2 Co-Occurrence Factorizations

There is a deep connection between word rep-
resentation algorithms and the factorization of
token co-occurrence matrices. This connection
is perhaps most transparent for the GloVe algo-
rithm (Pennington et al., 2014), whose loss func-
tion is defined to factor the positive values of the
log-co-occurrence matrix, and is minimized under
frequency-dependent weights, W , to produce word
vectors u⃗t, v⃗s and bias parameters at, bs that predict
the values of Fm:

∑
t,s∈D

Wt,s (u⃗tv⃗
T
s + at + bs − logFmt,s)

2
(2)

Under GloVe’s loss function (Eq. 2), a perfect
model’s point of convergence would have zero-
valued squared terms (Kenyon-Dean et al., 2020):

logFmt,s = u⃗tv⃗
T
s + at + bs (3)

Observing this point of convergence, (Kenyon-
Dean et al., 2020) remark upon the variation exhib-
ited by GloVe’s vector products and bias terms, but
provide little insight into how word vectors inter-
act via inner products to produce PMI-like values.
We investigate these details and discover critical,
mechanical insights that will be used to produce a
bias-probing methodology.

4.2.1 Clamped GloVe
Separating the effects of bias terms and vector prod-
ucts is essential for understanding GloVe’s connec-
tion to other models, and can be achieved by intro-
ducing a ‘clamping’ hyper-parameter, κ ∈ {0,1}, to
turn on/off the bias terms. Multiplying this Boolean
factor into the bias terms, GloVe’s general factor-
ization is:

logFmt,s = u⃗tv⃗
T
s + κ(at + bs) (4)

So, suppose GloVe is clamped (κ = 0) and that
its data follow the IFM (Eq. 1). In this case, vec-
tor differences, e.g., between u⃗t and u⃗s, act on
every other token w ∈ V’s v-vector as a constant:
(u⃗t − u⃗s) ⋅ v⃗Tw = log(fs/ft). This then indi-
cates that pairs of vectors with the same frequency
ratio: fsx

ftx
=

fsy
fty

have representations which op-
erate semantically equivalently, under the GloVe
model. We now emphasize the importance of this
frequency-ratios property in describing model me-
chanics across all classical word-vector models.



4.2.2 The Frequency-Ratios Property
As it will be regularly discussed throughout the
remainder of this document we formally define the
frequency-ratios property for any classical word-
vector representation, below.

Definition: Given two words from a vocabulary
t, s ∈ V and any set of classical, IFM-trained word
vectors: U,V ∈ R∣V ∣×k (k ≤ ∣V ∣), the frequency-
ratios property exists when the action of vector dif-
ferences, e.g., between U -vectors on any other to-
ken w ∈ V’s V -vector is equal to the log-frequency
ratio of t and s, regardless of w’s choice:

(u⃗t − u⃗s) ⋅ v⃗
T
w = log

fs
ft

(5)

We’ll use the frequency-ratios property to effi-
ciently measure the semantic bias in data that rep-
resentations would learn. To get there, we will ulti-
mately ask: does the linear-semantic analogy prop-
erty (completing analogies by addition/subtraction)
relate to a relationship of comparable unigram fre-
quency ratios (and products)? For example, this
asks if “man is to king as woman is to queen” is
described in data by: fking/fman ≈ fqueen/fwoman.

4.2.3 Un-Clamped GloVe
While a clamped model is technically less com-
plex (having fewer predictive parameters), GloVe
is often defined without clamping. In this case
(κ = 1), the connections between vector differ-
ences and model parameters become less clear.
Current conjecture inclines bias parameters will
converge to log-unigram-frequency values, leaving
the vector products to model the point-wise mu-
tual information (PMI) between tokens (Kenyon-
Dean et al., 2020). Provided GloVe’s inner prod-
ucts model the PMI, training GloVe on the IFM
(Eq. 1) should force all vector products to zero:
u⃗tv⃗

T
s = 0. From this view, more-independent

word co-occurrences should produce less infor-
mative vector products, i.e., poorer GloVe models.
While the evidence for the bias-parameters’ depen-
dence on frequency is compelling, we note that in
(Kenyon-Dean et al., 2020)’s comparison of bias
terms with unigram frequency exhibited a super-
linear trend, which from the logarithmic scale
of presentation allows rough approximation by a
power-law. Denoting a model exponent by γ > 1,
one can estimate the un-clamped bias parameters’
behavior as eat , ebs ∝ (fmt )γ , (fms )γ . With an
IFM defined by Fm-marginal frequencies, GloVe’s

Figure 1: Comparison of the IFM and empirical co-
occurrences for the word “they” within the GUM cor-
pus. Statistical dependencies between words are the
distances between points and the red dashed line. Unity
is added to all points to clarify non-occurrent pairs.

γ-scaled PMIs exhibit a frequency-ratios property:
(u⃗t − u⃗s) ⋅ v⃗

T
w = (γ−1) log(fms /fmt ). So GloVe’s

optimization away from true PMI avoids inner-
product singularities under the IFM, ensuring the
frequency-ratios property’s presence.

4.2.4 Word2Vec Softmax
Prior to GloVe’s development, the Word2Vec al-
gorithm first emerged as a seminal advancement
for word representation. While Word2Vec is per-
haps most commonly applied under the skip-gram
with negative sampling (SGNS) objective (Mikolov
et al., 2013c), negative sampling objectives were
originally developed to approximate more compu-
tationally complex softmax objectives (Mikolov
et al., 2013a). Here, we investigate the effects of
the IFM’s co-occurrences on both objectives.

While it has been known for some time that the
SGNS Word2Vec objective factorizes a shifted PMI
matrix (Levy and Goldberg, 2014), the implicit
matrix factorization behind Word2Vec’s softmax
objective to-date has not been derived. While this
could be due to the softmax objective’s mathemati-
cal complexity or the perceived lack of a factoriza-
tion’s utility (given unfactorized softmax’s compu-
tational complexity), we show that neither is truly
an obstacle and now derive the softmax factoriza-
tion. While providing insight into Word2Vec as
an LM, this presents an optimization strategy that
makes the softmax objective much more computa-



tionally feasible, opening new potential for large
scale applications, which we leave to future work.

Theorem: Under the log-softmax objective:

Lsoft = −∑
t∈V

∑
s∈V

Fmt,s logϕ(u⃗tv⃗s), (6)

the Word2Vec algorithm implicitly converges to-
wards a matrix factorization for all non-zero co-
occurrences of the form:

u⃗tv⃗
T
s = log

Fmt,s

fmt
, (7)

which is equal to the log-conditional probability
matrix of the co-occurrence model.

The proof of this theorem is provided in Ap-
pendix A, which is the first known—to the best
of our knowledge—proof of the softmax objec-
tive’s factorization. This facorization produces a
true LM, while Word2Vec’s SGNS objective and
GloVe do not. Historically, the softmax objec-
tive hasn’t been utilized for pre-training applica-
tions due to computational complexity, and be-
cause SGNS has been seen as a partial approxi-
mation of softmax. However, our softmax solu-
tion provides a low-complexity strategy for pre-
training—more powerful—LM-representations ef-
ficiently, via aggregated co-occurrences, just like
GloVe’s regression-based loss, e.g., replacing the
rightmost term of Eq. 2 with Eq. 7. This could
have far reaching consequences, but devising new
pre-training techniques was not the explicit in-
tention of this proof. For us, the factorization
elucidates the existence of the frequency-ratios
property for what is arguably the most fundamen-
tal/influential classical word vector algorithm as a
corollary (proof, Appendix B).

Corollary: When trained on the IFM, Word2Vec’s
softmax objective, Lsoft, exhibits the frequency-
ratios property asymmetrically for differences of
V -vectors acting on U (only).

Similar to un-clamped GloVe, the softmax skip-
gram objective for Word2Vec only supports the
frequency-ratios property on one side. The other
side of its parameters could be responsible for main-
taining the softmax’s normalization and/or contrast.
This could possibly explain why one of the U vs. V
matrices’ parameters have traditionally been prefer-
entially retained, i.e., since only the V -vector differ-
ences are guarenteed to exhibit the frequency-ratios
property when acting on U . However, we note that

both U and V are intrinsically intertwined as two
complimentary parts of the factorization. This also
indicates that both U and V matrices should proba-
bly be retained for later use, and perhaps only ever
combined by concatenation, since distribution in
this form would allow other researchers apply full
models. For example, this would allow for vectors
trained by Eq. 7 to be used as a low-compute LM.

4.2.5 Word2Vec-SGNS
We ask if the SGNS-Word2Vec objective also ex-
hibits any frequency-ratios property. Here, we find
asymmetric support again, and which is strikingly
similar to that of un-clamped GloVe:

Theorem: The Word2Vec SGNS objective trains
vectors which exhibit a frequency-ratios prop-
erty scaled by one minus its sampling parameter:
u⃗w(v⃗t − v⃗s)

T = (1 − α) log(fms /fmt ).

This theorem (proof, Appendix C) shouldn’t be
too surprising, since SGNS also factors a PMI-like
matrix (Kenyon-Dean et al., 2020). What is per-
haps most surprising about this result is that SGNS’
frequency-ratios property emerges directly from
hyper-paramaterization via α > 0, which tempers
the negative-sampling rate as a power-law scaling
of frequency. While α is generally presented with
limited theoretical justification, its intent is acceler-
ated learning, and its effect is biased (high-entropy)
sampling during learning. Reflecting on this, it
seems possible that un-clamping Glove induces γ
in lieu of receiving a biased sample of contrastive
information via α, as is done with SGNS. We like-
wise note that the piece-wise construction of W in
GloVe’s formulation complicates analysis, which
could explain γ’s limited presence over only the
largest frequencies (Kenyon-Dean et al., 2020).

Considering how the frequency-ratios property
appears ubiquitously across the diversity of classi-
cal word vector models under the IFM, we will ex-
amine the degree to which independence pervades
co-occurrence models, below. However, with the
frequency-ratios property in the focus, we now ex-
hibit its immediate capacity to profile the semantic
biases present in data.

5 Probing Data for Semantic Biases

The experiments described here draw from sev-
eral publicly available data sets and intend to ex-
hibit how analogies and token frequencies inter-
act. Token-frequency distributions are taken from
two corpora denoted by G and W , correspond-



ing to Google Books’ most recent N -grams re-
lease (Google, 2006) and a controlled collection of
Wikipedia articles, described in detail below. Our
interest with analogies is not in their prediction, and
rather in developing a bias-probing methodology
for evaluating data. So while a number of analogi-
cal test sets exist—including from the well-studied
MSR collection (Mikolov et al., 2013a,b)—we uti-
lize the Bigger Analogy Test Set (BATS) for its
size, organization, and diversity, providing a to-
tal of roughly 105 analogical comparisons across
categories (Gladkova et al., 2016).

Critically, BATS contains analogical compar-
isons for multiple encyclopedic groups. While
analogical prediction experiments often perform
well at the country-capital relationship, the more
acute geographic category comparing UK coun-
ties and cities appears more challenging (Gladkova
et al., 2016). We ask if this lower performance is
due to poor representation in source data, i.e., if
the relative abundance of language which discusses
UK cities and counties is low in the data used to
train word vectors that have been studied in the past.
To examine this question, we will study the extent
to which an intentionally-biased sample exhibits
support for the UK city-county analogies.

5.1 Bias Measurement via Analogies

Stepping back, there should be no surprise if analo-
gies can be used to directly measure bias in data.
The WEAT test for measuring bias in word vec-
tors (Caliskan et al., 2017) is based on four same-
sized sets of words, which are referred to as target,
e.g., gender-related words; and attribute, e.g., role-
related words. Sampling one word from each of
these sets essentially forms an analogy (even if non-
sensical or offensive), and the WEAT formula mea-
sures bias via similarity statistics averaged across
all comparisons. Furthermore, more recent meth-
ods for controlling bias in modern, self-attending
systems retain this formulation (Karve et al., 2019),
generalizing WEAT to four potentially-different-
sized word sets, but again, with two for target words
and two for attributes that can be used to constitute
the dyads of hypothetical analogies.

To measure bias directly in data using analo-
gies, denote each of the dyads, e.g., (man,woman),
within a given analogy, x ∶ y, as: x = (t, s) and
y = (t̃, s̃). On any given pair of dyads, we intro-
duce the absolute difference of log-frequency ratios
as a measurement of the dissonance, ∆, expressed

towards the dyads, given a corpus, D:

∆ (x, y ∣ D) = ∣log
ftfs̃
fsft̃

∣ /maxl∈V{log fl} (8)

This quantity is entropicly ‘normalized’ by the
largest value that the absolute difference could pos-
sibly take, occurring when a dyad of ratio 1 is com-
pared to one with least-most frequent words. This
places ∆ in [0,1] and makes it possible to compare
dissonance between corpora, i.e., the expressions
of bias that data exhibit.

Musically, ∆, measures the degree to which the
dyads are consonantly/dissonantly equivalent, i.e.,
whether the dyads play the same ‘chord’ (regard-
less of pitch). This is because ∆ can be considered
in terms of physical waves, i.e., modeling a docu-
ment as a superposition of unit-amplitude square
waves, whose peaks approximate the positions of
each type’s occurrences. Since physical waves of
constant amplitude and velocity will have powers
proportional to the squares of their frequencies,
each token-frequency ratio becomes equivalent to
the square root of two waves’ power ratio. Thus
when un-normalized, the dissonance can be under-
stood by its units of decibels, which more broadly
informs us that ∆ measures an absolute difference
in decibels expressed by each dyad, or, the differ-
ence in loudness between the dyads’ overtones.

5.2 Analogical-Bias Probing Experiment

While it is customary to train word vectors on
Wikipedia articles, we hypothesize that historical
samples have had relatively few descriptive pas-
sages relating the UK cities to their counties, as
compared to national capitols with their countries.
The latter are likely more-broadly discussed on
Wikipedia, and we hypothesize the former would
be if their relative associations were more ade-
quately represented in data. To ensure this, we
composed our sample of Wikipedia articles, W ,
from the collection of all pages leading to and
from any UK city’s Wikipedia page, where UK
cities are strictly defined according to those listed
on Wikipedia in its presentation of the UK’s 69
officially-designated cities (as of 2021). This re-
sulted in a Wikipedia corpus of roughly 200,000
articles that is linked to the subjects of UK cities
and counties.1 By comparison of frequencies,W
is about one-thousand times smaller than G.

1Accessed 10/31/21: en.wikipedia.org/wiki/
List_of_cities_in_the_United_Kingdom

en.wikipedia.org/wiki/List_of_cities_in_the_United_Kingdom
en.wikipedia.org/wiki/List_of_cities_in_the_United_Kingdom


Figure 2: Comparison of the dissonance towards the different BATS analogy categories for the Google Book
corpus, G, and a much smaller corpus of Wikipedia articles that connect to pages discussing the UK cities. Positive
bars indicate categories towards whichW is more biased, i.e., which contain analogies thatW supports more.

In application, low-dissonance values indicate
which analogies are supported by corpus frequency
ratios. To determine the overall support a corpus
has for a set of analogies, A, an average, DD(A),
of ∆-dissonance values can be computed. Method-
ologically, we weight averages by the corpus fre-
quencies of the tokens within each analogy’s dyads.
In Fig. 2, we compute the difference of averages be-
tween G andW : DG(A)−DW(A) for the different
analogical categories of BATs, i.e., so that positive
bars indicate whereW supports a category’s analo-
gies more than G. Average values on their own
(no differences) for this experiment can likewise be
observed within Tab. 1 in the Appendices. Either
view exhibits how the only category for whichW
exhibits less dissonance (more bias) than G is the
UK city-county category, and furthermore, that this
bias is clustered amongst related categories, e.g.,
name-nationality, which are elevated. We view
these results as quite sensible for a bias metric, and
indicating a promising pathway towards developing
low-cost and -compute bias probes for data. This
will feature centrally in our final discussion, af-
ter investigating the IFM’s relevance to real-world
corpora, both for its central role in elucidating the
analogical bias probe methodology, and the paths
it lays toward future discoveries.

6 Co-occurrence and Independence

Our study of the IFM and measurement of bias in
data with analogical test sets raises an important
question: how relevant is the IFM to real-world

data? While it’s not possible to objectively state if
co-occurrences are independent or not, empirical
systems do express independence on a spectrum.
Determining the prevalence of independence in co-
occurrence statistics requires control over the con-
text model, i.e., m affects independence. To com-
pare co-occurrence frequencies between the data
and those sampled independently from marginal
distributions, one can compare to independence, as
measured by the IFM (Fig. 1). In the figure, the
extent to which the empirical frequencies are equal
to the IFM’s can be quantified by how close points
fall to the line y = x. Intuitively, this expresses how
independent the empirical co-occurrences are when
m = 10, and grounds the subject (independence)
that we wish to study at larger scales of data.

6.1 Quantifying Independence

To measure statistical dependencies one can take
the PMI’s expectation over its joint probabilities
and compute the co-occurrence mutual information
(MI). MI measures how dependent the statistics of
a joint distribution are. When MI is normalized
by the joint information its values fall in [0,1]
and define the information quality ratio (IQR):
Ik,m = −∑t,s∈V P

m
t,s log

Pm
t,s

pmt p
m
s
/∑t,s∈V P

m
t,v logPmi,j .

Each of Pm and pm are probabilistic forms of Fm

and fm (divided by Mm
F ), and we will used k to

record the number of documents in a given sample.
Intuitively, Ik,m describes how close to indepen-
dent co-occurrences are, and Ik,m → 0 indicates
co-occurrences becoming more independent.



Linguistic dependencies are reported to ex-
hibit power-law relationships between dependence
length-d (the number of other words up through
the dependence) and frequency (Chen and Gerdes,
2019). Through preliminary analysis of the
GUM corpus’, we find Ik,m values—statistical
dependencies—also appear to decay as a power law
function of the window size, m (Appendix E.2).
Critically, we observe that the sentence-length dis-
tribution sets a bound on the background of con-
trastive information, saturating with increasing val-
ues of m (Fig. 3). However, for even the smallest-
k corpora and any values of m, Ik,m appears
less than 0.5, suggesting in some sense that co-
occurrences are more independent than dependent.
However, this view is reductive and leaves some
critical questions, which we begin to address below.

Does the IQR measure linguistic dependencies?
Beyond observing Ik,m < 0.5, we evaluate Ik,m
more broadly in Appendix E, where a full pro-
file of Ik,m-values is provided for GUM. We like-
wise model the IQR as a power-law function of the
context-window size,m, to elucidate if and how lin-
guistic dependencies contribute to the statistical dy-
namics of co-occurrence dependence, as measured
by Ik,m. Seemingly, Ik,m can be modeled strongly,
when properly modulated by the sentence length
distribution. This means sentence tokenization
plays a central role in defining co-occurrence statis-
tics. Likewise, lower-quality sentence tokeniza-
tions seem to result in more-complex distributions,
optimization challenges, and noisy Ik,m-profiles.
Perhaps most surprisingly, the power-law which
models Ik,m’s statistical dependencies appears to
exhibit a scaling exponent, ν, which parametrically
fits the density of linguistic dependencies annotated
in GUM (Fig. 3, inset). Further experimentation
on different, parsed corpora is clearly required to
determine if this model and relationship are robust.

Does the IQR have a lower bound? Determin-
ing this requires measuring and fitting Ik,m for
larger data sets. Combinatorality imposes signifi-
cant computational challenges for large values of
m, so lower-m values (a smaller window) were
used to measure the IQR for larger values of k
(with more data). As there is no way to measure
Ik,m for arbitrary corpus sizes, limiting arguments
are ultimately required (Appendix. E.4). We find
that the k-limiting dynamics of Ik,m-values appear
non-zero and convergent with bounds that can be
solved (Eq. 12) and computed (Fig. 4).

7 Discussion and Conclusions

The gravity of the IQR’s lower bound should not be
understated: even a countably-infinite collection of
documents will retain a definite portion of depen-
dent statistical information in its co-occurrences.
In some sense, this assures the statistical need for
large corpora to ‘chip away’ at the underlying sta-
tistical dependencies recorded in linguistic data.
However, while convergence is rapid at first, it
slows considerably for larger corpora, indicating
ever-diminishing returns from bigger data. From
our bias-probing experiments, we exhibit how more
data isn’t necessarily more representative (Fig. 2).
Thus, we ask if the IQR’s limiting behavior is a
process of document structure washing out in fa-
vor of more-local relationships. If so, we might
then interpret Fig. 2 as exhibiting a corpus whose
co-occurrences have been unusually constrained
for its document distribution, providing another
interpretation of semantic bias.

Seemingly, statistical dependencies are sparse
in sentences, and m-word sliding-window context
models can’t separate these from independent vari-
ation while absorbing co-occurrences. This inter-
pretation can be intuitively stated by modifying
Firth’s famous quote (hence the paper’s title): You
shall know a word by the company it keeps, and
what else lies in the vicinity. However, we know
less if it is us who know words by this truism, as
much as it is AIs who know how to use words by it.

Arriving at this point has entailed the develop-
ment of novel techniques for probing unstructured,
linguistic data for semantic biases using data sets of
analogies. On their own, these results appear pos-
itive, and exhibit their own methodological value.
However, they likewise emerged from another dis-
covery, of the universal, frequency-ratios property
for word vectors. The substantiation of that prop-
erty required deriving a limiting factorization for
the original Word2Vec objective, whose apparent
natural formulation as the contextualizing LM pro-
duced by the co-occurrence conditional-probably-
matrix underpins its importance. This production
of a closed-form solution to Word2Vec could per-
haps produce the biggest impacts of this work by
providing rich new pathways towards efficiently
deriving representation statistics. To this end, we
highlight the IFM’s derivation as another core out-
come of our work, both for its central roles in anal-
ysis, and it’s potential to warm-start embedding
layers efficiently via unigram statistics.
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A Word2Vec’s Softmax Factorization

Theorem: Under the log-softmax objective:

Lsoft = −∑
t∈V

∑
s∈V

Fmt,s logϕ(u⃗tv⃗s), (9)

the Word2Vec algorithm implicitly converges to-
wards a matrix factorization for all non-zero co-
occurrences of the form:

u⃗tv⃗
T
s = log

Fmt,s

fmt
, (10)

which is equal to the log-conditional probability
matrix of the co-occurrence model.

Proof: The softmax function is computed by row:
ϕ(u⃗tv⃗

T
s ) = e

u⃗tv⃗Ts /∑l∈V e
u⃗tv⃗Tl . To solve for u⃗tv⃗Ts ,

we must determine all components of Lsoft’s gra-
dient which depend on u⃗tv⃗Ts , and which arise from
different portions of Lsoft’s Jacobian. This in-
cludes the positive, differential portion from the
softmax’s numerator: −Fmt,s (1 − ϕ (u⃗tv⃗

T
s )) as well

as the negative, differential portion emerging from
the softmax denominators: ∑l∈V ∖{s} Fmt,lϕ (u⃗tv⃗

T
s ),

which sums over all l ≠ s, since softmax’s deriva-
tive is vector valued.

By combining the negative and positive portions,
the partial derivative of Lsoft with respect to u⃗tv⃗Ts
is a sum which ranges over the entire vocabulary:

∂Lsoft

∂ (u⃗tv⃗Ts )
(u⃗tv⃗

T
s ) = −F

m
t,s +∑

l∈V

Fmt,lϕ (u⃗tv⃗
T
s )
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When set equal to zero, the sum is easily solved:

ϕ (u⃗tv⃗
T
s ) =

Fmt,s

∑l∈V F
m
t,l

=
Fmt,s

fmt
(11)

where the co-occurrence m-window ‘inflation’ de-
fines the unigram statistics as: fmt = ∑l∈V F

m
t,l by

the tth marginal sum, i.e., pushing the factorization
towards the log-conditional probability matrix

Eq. 11 almost provides the main result, but only
factorizes the softmax’s application. Due to nor-
malization, there will necessarily be error from
the log-conditional probability matrix, which we
handle by defining some βt close to 1 in (0,1)
for each t ∈ V . Selecting these values can used
to produce an ansatz solution, which can be used
to understand the limiting matrix being factorized,
and hence algebraically solve for arbitrarily-well
optimized softmax representations. First, define
the ansatz’s positive-occurring elements by:

u⃗tv⃗
T
s = logβt

Fmt,s

fmt

Then define t’s nt negative-occurring elements by:

u⃗tv⃗
T
l = log

1 − βt
nt

Under this initialization, the error for the positive-
occurrence pairs, εt,s, is determined as:

εt,s =
Fmt,s

fmt
− ϕ (u⃗tv⃗

T
s ) =

Fmt,s

fmt
(1 − βt)

Likewise, we can also now easily observe the error
for the non-occurrent pairs:

εt,l = −ϕ (u⃗tv⃗
T
l ) =

1 − βt
kt

Critically, these errors diminish as βt → 1. Fur-
thermore, driving βt → 1 reduces the negative log
likelihood as it pushes the true co-occurrent factor-
ized values towards the claimed limiting solution.
This also indicates that the softmax model likely
has no exact algebraic solution for its factoriza-
tion. Specifically, while positive-occurring entries
converge toward:

lim
βt→1

u⃗tv⃗
T
s = log

Fmt,s

fmt

the non-occurring pairs in the factorized matrix
have values which become ever more negative:

lim
βt→1

u⃗tv⃗
T
l = −∞

This is generally the case for GloVe and
Word2Vec’s SGNS objective, too, as neither is de-
fined on negative-occurring values and would re-
quire a similar, negative-diverging ansatz for an
algebraic solution to their factorizations. This con-
cludes the main proof, and now allows for inves-
tigation of how unigram-frequency ratios interact
with vector differences. ∎

B Softmax Frequency Ratios

Corollary: When trained on the IFM, Word2Vec’s
softmax objective, Lsoft, exhibits the frequency-
ratios property asymmetrically for differences of
V -vectors acting on U (only).

Proof: Substituting the IFM into the solved
softmax-Word2Vec factorization (Eq. 10), we find:

u⃗t(v⃗s − v⃗s̃)
T
= log

fs
fs̃

which is precisely the frequency-ratios property.
However, when we apply this analysis symmetri-
cally we find something different:

(u⃗t − u⃗t̃)v⃗
T
s = log

βtftf
m
t̃

βt̃ft̃f
m
t

,

which depends on co-occurrence ‘inflation’, as well
as the ansatz’s choice of βt values. This is yet an-
other, different form of the frequency-ratios prop-
erty, where if the βt values are chosen proportional
to their respectively-inflated unigram frequencies:
βt = f

m
t /Mm

F , the exact frequency-ratios property
is recovered to a full symmetry. ∎

C SGNS Frequency Ratios

Theorem: The Word2Vec SGNS objective trains
vectors which exhibit a frequency-ratios prop-
erty scaled by one minus its sampling parameter:
u⃗w(v⃗t − v⃗s)

T = (1 − α) log(fms /fmt ).

Proof: In (Kenyon-Dean et al., 2020)’s work, the
noise distribution was assumed different from con-
vention, which utilizes a hyper-parameter, α ∈ R,
commonly set to α = 3/4. Its general effect will
modify the PMI-convergence points into:

u⃗tv⃗
T
s = − log

⎡
⎢
⎢
⎢
⎣

Fmt,s

fmt

Mm,α
f

(fms )
α

⎤
⎥
⎥
⎥
⎦
+ log k.

where Mm,α
f is the corresponding normalization

constant for an α-power, m-inflated unigram fre-
quency distribution: Mm,α

f = ∑s∈V (fms )
α.



Observing the V -vector-difference action on U
and When one defines an IFM by the inflated un-
igram statistics and substitutes the corresponding
F̂min for Fm another frequency-ratios property
emerges, but this time with effect scaled by 1 − α:

u⃗w(v⃗t − v⃗s)
T
= (1 − α) log

fms
fmt

So when one sets α ≠ 1, the frequency-ratios prop-
erty appears again, for Word2Vec’s V -vectors on
the U matrix. Note that the only value of α for
which this property doesn’t exist (α = 1) is gen-
erally not utilized in applications, with most dis-
cussion usually asserting that α = 1 produces less
adept models.

For SGNS, a frequency-ratios property is only
clearly entailed for U -vector differences on the V
matrix. However, it appears that the frequency-
ratios property for U -vector differences on V
should be absent, as SGNS’s negative informa-
tion/normalization is noisily rigid, based entirely
on independent sampling at a fixed rate of k-to-1:

(u⃗t − u⃗s)v⃗
T
w = − log

F̂mt,wf
m
s

F̂ms,wf
m
t

= 0

A fuller analysis of the frequency-ratios property
for the SGNS objective (as well as for softmax)
would ultimately benefit from limiting analysis of
the gradient descent process. While this is partly
considered for softmax in the context of an ansatz
solution, further discussions of limiting effects and
optimization is left for future work. ∎

D Bias Probing Experiment

BATS Category Dissonance (D)
Inflection G W

I01: noun-plural_reg 0.035 0.053
I02: noun-plural_irreg 0.044 0.068
I03: adj-comparative 0.038 0.068
I04: adj-superlative 0.032 0.068
I05: verb_inf-3pSg 0.033 0.057
I06: verb_inf-Ving 0.03 0.054
I07: verb_inf-Ved 0.025 0.076
I08: verb_Ving-3pSg 0.048 0.064
I09: verb_Ving-Ved 0.036 0.092
I10: verb_3pSg-Ved 0.04 0.057
Derivation G W

D01: noun+less_reg 0.076 0.118
D02: un+adj_reg 0.048 0.072
D03: adj+ly_reg 0.045 0.067
D04: over+adj_reg 0.066 0.151
D05: adj+ness_reg 0.074 0.129
D06: re+verb_reg 0.073 0.11
D07: verb+able_reg 0.1 0.178
D08: verb+er_irreg 0.061 0.114
D09: verb+tion_irreg 0.061 0.082
D10: verb+ment_irreg 0.039 0.065
Lexicography G W

L01: hypernyms-animals 0.159 0.212
L02: hypernyms-misc 0.1 0.181
L03: hyponyms-misc 0.119 0.165
L04: meronyms-substance 0.084 0.123
L05: meronyms-member 0.072 0.111
L06: meronyms-part 0.123 0.166
L07: synonyms-intensity 0.098 0.152
L08: synonyms-exact 0.091 0.125
L09: antonyms-gradable 0.113 0.163
L10: antonyms-binary 0.122 0.173
Encyclopedia G W

E01: country-capital 0.051 0.067
E02: country-language 0.101 0.135
E03: UK_city-county 0.081 0.063
E04: name-nationality 0.06 0.062
E05: name-occupation 0.065 0.08
E06: animal-young 0.097 0.147
E07: animal-sound 0.094 0.163
E08: animal-shelter 0.095 0.132
E09: things-color 0.073 0.11
E10: male-female 0.072 0.105

Table 1: Comparison of D for G andW (lower values
mean less dissonance/more bias) over BATS analogies.



Figure 3: IQR profile for GUM (points), measured
on 75 randomizations, scanning all values of m and
k at powers of two, alongside dependence model fits
(dashed lines). Color indicates the log-average num-
ber of tokens for each sample size, k. Inset shows
the whole corpus’ (black points/dashed lines) scaling
exponent, ν, as a natural fit (red dashed line) for
the cumulative-rate of dependencies, λ, that one can
observe against the co-occurrence background (gray
points), as the dependence length and co-occurrence
window size (d =m) increase.

E Quantifying Independence

Here, we first empirically review the IQR’s overall
shape in the context of the Georgetown University
Multilayer (GUM) Corpus (Zeldes, 2017), which
affords opportunity to model the IQR as a function
of the context-window size, m, allowing for deter-
mination of if and how linguistic dependencies con-
tribute to the statistical dynamics of co-occurrence
dependence, as measured by Ik,m.

E.1 Measuring Dependencies Empirically

We perform samples amongst GUM’s kmax = 150
documents. In Fig. 3, we observe that even for
the highest-IQR (1-document) samples, I1,m < 0.5,
i.e., the IQR’s values are less than one half for all
window and sample sizes. For now, we’ll forego the
effects of k and focus on how Ik,m is a decreasing
function of m. This should be expected, i.e., that
lower-m values exhibit less independence, and as
we now show, this can be understood according to
the dashed-line models that Fig. 3 exhibits.

E.2 Modeling the Density of Dependencies

In one sense, dependency parsing grammatically
determines a rule for ‘who’ each given word’s com-
pany is. By annotators, each dependency must be

determined from the full range of co-occurrences
available in the given sentence. As it turns out,
dependencies are believed to have their own power-
law statistical relationships between dependence
length-d (the number of other words up through
the dependence) and frequency (Chen and Gerdes,
2019). Previously, raw counts of dependencies
were observed to form a power-law-like distribu-
tion that scaled as d2.5. However, we wish to
model dependencies against their background of co-
occurrences in sentences. This means the sentence-
length distribution modulates a critical bound on
co-occurrence IQR. Next, we use the nature of how
this background of contrastive information in sen-
tences saturates with increasing m to model the
lower limit of IQR values observed in Fig. 3. To
produce this model, we first formally state our con-
jecture, and then derive the model.

Conjecture. Linguistic dependencies are ‘the com-
pany words keep’ from the distributional hypothe-
sis, and underpin the statistical dependencies one
can measure against the co-occurrence background
via Ik,m. We find support for this conjecture by
developing a parametric model for Ik,m, fitting it
over the GUM corpus, and exhibiting how its fit
corresponds to the density of linguistic dependen-
cies against their co-occurrence background as the
same power-law of m.

E.2.1 Forming Dependence Models
Define gm to be the number of dependencies of a
given length: gm ∝ m−ν , where ν is a positive,
power-law scaling exponent. Alongside ν, we de-
fine a maximum dependence length, mmax, as a
model parameter to form the IQR’s estimator as
a function of the context window, m. First, we
approximate the ν-power-law’s cumulative distri-
bution function over dependencies covered by the
window m:

Gm = ∫

m

0
g`d` =

m1−ν

m1−ν
max

.

Here, totality requires setting Gm = 1 for all m >

mmax. This definition for Gm allows us to accu-
rately show how independent statistics saturate co-
occurrence models as m becomes large. However,
predicting the IQR for empirical co-occurrences de-
pends heavily on the sentence-length distribution,
which determines how many co-occurrences exist
per each center word. Any sentence of length L
will induce L(L − 1) co-occurrences if m ≥ L.



If m < L, the longer-range co-occurrences are
ignored, making the general, total number of co-
occurrences per sentence of length L equal to:

TL,m = (min(m,L) − 1) ⋅ (2L −min(m,L))

Supposing there are SL sentences for each L and
that the longest sentence length is Lmax, the total
number of co-occurrences in an m-radius sliding-
window model will be Tm = ∑

m
L=1 SLTL,m, which

defines the limiting-m co-occurrence model—with
the longest range dependencies—by TLmax . Setting
T0 = 0 and denoting the total unigram frequency
in a sample of size k as Mk allows us to define the
co-occurrence sampling rate for all m = 1,⋯, Lmax
as:

qm =
Tm − Tm−1

2Mk

Given any m, Gm, represents the cumulative
portion of all dependences sampled from a 2m-
window, according to our base model. This base
model is then modulated by the sampling rate, qm,
and scaled by a constant ρ:

Îk,m = ρ ⋅ [qm
Gm
2m

+ (1 − qm)
Mk

Tm
]

which parametrically defines the average number of
dependencies word. Overall, this formulation can
intuitively by understood to transfer—via the sam-
pling rate—power-law varying dependence den-
sity smoothly, into a limiting ρ number of depen-
dences per word in the sample: Mk

TLm
. Via ρ, the

model assumes on average that each word depends
on ρ of the other words in the same sentence (co-
occurrences), meaning ρ ∈ [0,

TLmax
M ].

E.3 Fitting Dependence Models
As can be seen in Fig. 3, Îk,m can be parame-
terized to fit the IQR quite strongly. Compared
to the scale of co-occurrences absorbed by large
representation models, the GUM data set is quite
small. However, it affords a critical opportunity
to observe how the power-law exponent, ν, corre-
sponds to the density of linguistic dependencies
against the co-occurrence background. Critically,
we find in Fig. 3’s inset a correspondence between
ν and the rate of decay of linguistic dependencies
against the co-occurrence background for full order
of magnitude in the dependence-length distribution.
While the scale of these results are small inside of
GUM, they strongly support our conjecture. How-
ever, a number of questions and challenges emerge

from these experiments. Practically, sampling from
GUM has exhibited how the longest-range depen-
dencies are simply not available to model in shorter
sentences—the effects of small samples and vary-
ing sentence lengths can be seen in the empiri-
cal roughness for larger-m windows in smaller-k
samples. Furthermore, larger samples pose com-
binatoral scaling for larger-m co-occurrences that
makes direct measurement of the IQR prohibitive.
To compound these issues, we seek to know if
any limiting bounds on the IQR exist, i.e., we ask:
“would the IQR from an infinite number of docu-
ments be zero?”

E.4 Bounding Dependence from Below

To see the effects of scale on the IQR, more data
are required for experimentation than are available
within the GUM corpus. Even if we can’t expect
linguistic dependencies to be annotated, we still
wish to control for tokenization. Hence, to bound
the IQR we work next with the well-known Wiki-
Text language modeling benchmark (Merity et al.,
2016), which was expanded in v103 to over 30,000
documents (roughly 200-times the size of GUM).
Our objective in this section is to bound the IQR,
and large-m measurement becomes intractable for
large k-document samples. Hence, we will restrict
m ≤ 10 for all bounding experiments.

Suppose we fix any window size, m, let k be
the number of documents in a sample, and Ik,m
denote the IQR’s average value. For any sample
size, k, then let Mk denote the expected number
of tokens in the sample, and observe that dou-
bling k will double the expected number of tokens:
M2k = 2Mk. We’re most interested in the rate of
IQR reduction incurred from doubling the number
of sampled documents, which we denote by δ2k,m.
Averaging across samples, we have generally ob-
served the IQR to fall into a well-ordered—perhaps
power-law—pattern of decay (Fig. 4, left). This
means that for large values, k1 ≤ k2, one can ex-
pect: δ2k2,m ≤ δ2k1,m. Next, we prove that these
observed conditions result in the existence of a
positive lower bound for the IQR, which exists be-
low the IQR one could measure for any document-
sample size, k.

Theorem. If the k-limiting behavior of the IQR-
reduction rate is power-law decay: δ2k,m ∝ Mγ

k ,
the IQR’s limiting, I∞,m, values are positive.

Proof. Supposing we fix any window size, m,
let k be the number of documents in a sample,



Figure 4: (Left) Rate of IQR reduction presented against the number of tokens in 75 samples of of size k taken
at powers of two from the training articles of the WikiText-103 corpus for context-window sizes m up to 10
(indicated by color). Past the size of the whole corpus (black dotted line), the reduction rates are extrapolated
with a power-law to model limiting behavior (spectrum of dashed lines). (Right) IQR profile for the WikiText-103
training corpus up to the largest two-power sample size (most pink) for context-window sizes up to m = 10. Past
the largest-sampled size (circled points), the rate-reduction power law is used to extrapolate (e.g., the black dashed
line) beyond the corpus (black dashed line) to compute non-zero limiting IQR values across m-window sizes.

and Ik,m denote the IQR’s average value. For
any sample size, k, let Mk denote the expected
number of tokens in the sample, and observe that
doubling k will double the expected number of to-
kens: M2k = 2Mk. We next express the rate of
IQR reduction incurred from doubling the num-
ber of sampled documents by δ2k,m. Averaging
across samples, we have generally observed the
IQR to fall into a well-ordered—perhaps power-
law—pattern of decay. This means that for large
values, k1 ≤ k2, one can expect: δ2k2,m ≤ δ2k1,m.

We wish to know about any limiting dynamics of
Ik,m for large k, which under the observed pattern
of decay ammounts to asking if the IQR converges
to zero or a positive limit. In either case, we’ll refer
to any limiting quantity as I∞,m, which describes
the portion of information that is dependent in a
co-occurrence model of context for a population
of data, i.e., an arbitrarily-large sample. Critically,
this limit expresses the dependence in how a pop-
ulation of language was used, separately from the
dependence on what its samples convey.

Assuming k is large enough to well order the re-
duction rate at a window size of m, we use δI2k,m
to write an IQR-update rule for doubled samples:

I2k,m = Ik,m(1 − δ2k,m),

Applying recursion over this equation allows us to

express IQR values for arbitrarily large samples:

I2nk,m = Ik,m

n

∏
l=1

(1 − δ2lk,m)

However, to study a limiting value for the IQR we
apply the reduction rate in series: I∞,m = Ik,m −

∑
∞
n=0 I2nk,mδ2n+1k,m. With this, we can substitute

the product form for I2nk,m into our expression for
I∞,m to produce:

I∞,m = Ik,m [1 −
∞

∑
n=0

δ2n+1k,m

n

∏
l=1

(1 − δ2lk,m)]

Decreasing monotonicity in the reduction rate im-
plies that the fastest-decaying extreme occurs when
the reduction rate is a constant. Supposing this to
be the case, we assume a critical sample size, km,
past which a constant, δm, describes the reduction
rate. When one substitutes this into our expres-
sion for the IQR’s limit, a geomtric series emerges
which unsurprisingly brings the IQR’s limit to its
low (0-valued) extreme:

I∞,m = Ikm,m [1 − δm
∞

∑
n=0

(1 − δm)
n
] = 0

One can in fact approximate the reduction rate em-
pirically by computing a quotient of expected IQR
values from samples of documents:

δ2k,m ≈
E [Ik,m − I2k,m]

E [Ik,m]



When measured, we find that for k-samples larger
than some critical sample size, km (dependent on
m), the reduction rate appears to scale like a power
law in the number of tokens sampled:

δ2k,m ≈
M−γ
k

10bm

This models δ2k,m with a scaling exponent, γ,
and constant of proportionality, 10bm , the latter
of which is dependent upon the window size, m.
Utilizing this empirically-motivated power-law, we
obtain a different form for the limiting IQR:

I∞,m = Ik,m

⎡
⎢
⎢
⎢
⎢
⎣

1 −
∞

∑
n=0

M−γ
2n+1k

10bm

n

∏
l=1

⎛

⎝
1 −

M−γ
2lk

10bm

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

To bound I∞,m from below one can replace
each of the products of n with unity. The iden-
tity: M2k = 2Mk allows further generalization of
the doubling numbers as: M2n+1k = 2M2nk, whose
substitution into the bound produces a convenient
form and infinite geometric series of ratio 2−γ :

Ik,m [1 −
M−γ

2k

10bm(1 − 2−γ)
] < I∞,m (12)

To assure this lower bound is positive we now need
only require:

M−γ
2k

10bm(1 − 2−γ)
< 1

which amounts to asserting that the average number
of tokens, Mk, from the original sample size of k is
sufficiently large to bound the the a positive-valued
function parameterized by m via γ and bm that
notably has no dependence on k:

10−bm/γ(2γ − 1)−1/γ <Mk

Hence, positive lower bounds on the IQR could
be confirmed experimentally for any given m by
increasing the initial sample size of an the analysis.
This likewise provides a means for the observing
the elimination of transient independence in a co-
occurrence model, where specifically, as k is in-
creased, the positive, lower bound tightens to the
limiting IQR value from below. ∎

E.4.1 Computing a Bound for Dependence
Returning to the WikiText Corpus, we repeatedly
sample the available powers of k = 2n, which
for WikiText-103 allows n ≤ 14, since the total

number of documents in the collection is roughly:
kmax = 215. These doubling samples are used to
empirically compute our approximations of the re-
duction rate’s average behavior in Fig. 4 (left), and
the value of γ is optimized over only those values
for this the power-law decay is apparent. Moreover,
we constrain the values of b to satisfy a continuous
model projecting from the data, i.e., optimization
is only performed over γ. Once γ and the different
values of bm are established, 210 iterative updates
to Ik,m for 215 to produce the large-k IQR val-
ues needed for stable computation the IQR’s limit,
I∞,m. Each of these modeling components used in
computing the IQR’s bound is exhibited in Fig. 4
(right), and confirm the nature of our bounding
result.


