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Abstract—Consumer Health Vocabularies (CHVs) function
as lexicons that help healthcare professionals and consumers
communicate effectively regarding medical concepts. A CHV is
a record of a list of terms that are used by consumers when
discussing health-related issues, as well as the associated medical
concepts and terminology. In this work, we describe an algorithm
to identify candidate terms and associated concepts for inclusion
in the CHV from analyzing user-generated text on internet health
forums. The proposed algorithm aims to identify terms in user-
generated text that are similar to existing terms in the CHV and
identify the closest Universal Medical Language System (UMLS)
concept for the candidate terms. The model utilizes internal
contexts of phrases to generate a likelihood ranking for each
phrase observed in the input data. We demonstrate a limited
evaluation of model performance and present a list of candidate
terms generated by the model.

Index Terms—healthcare, vocabulary, vocabulary expansion,
consumer health vocabulary

I. INTRODUCTION

The use of technical jargon is prevalent in a wide variety of

industries and communities. In healthcare, jargon is a critical

barrier in communication between healthcare professionals

and consumers as well as between consumers. Most healthcare

consumers are laypeople who do not possess comprehen-

sive knowledge of medical terms. Consumers usually utilize

more general language when discussing medical concepts.

The goal of a Consumer Health Vocabulary (CHV) is to

identify a mapping between these more colloquial terms used

by consumers and their counterparts in the body of medical

terminology. A CHV “refers to a collection of expressions,

concepts, attitudes, and beliefs observed to be used by most

members of a consumer discourse group to communicate about

health-related issues” [1].
While a CHV hand-crafted by experts can be a valuable

resource for numerous health informatics applications, main-

taining and updating the CHV in accordance with real-world

consumer language usage is a difficult and expensive task.

In this work, we develop an algorithm to expand an existing

CHV. We frame the task as a dictionary expansion problem

and employ a model that is potentially generalizable. The

developed system can be used to analyze a body of text

and generate suggestions to augment an existing lexicon. In

addition to surfacing suggestions for new entries, the system

also identifies the closest “meaning” (medical terminology)

that is present in the lexicon for the suggested phrase.

II. THE CONSUMER HEALTH VOCABULARY

The Consumer Health Vocabulary is an Open-Access and

Collaborative (OAC) data initiative formed and maintained

through the efforts of researchers at the University of Utah,

Brigham and Women’s Hospital, Harvard Medical School,

National Library of Medicine, and University of Wisconsin [2].

The most recent version of the CHV contains 152, 336 terms,

where each term is assigned a Universal Medical Language

System (UMLS) Concept Unique Identifier (CUI), a UMLS

preferred name, a CHV preferred name, an explanation (if

available), information on whether the CHV name or the

UMLS name is preferred, whether the term is “disparaged”,

a consumer familiarity score, a context-based estimate of fa-

miliarity, a familiarity score indicating how closely the term is

related to known examples, a combination of all the familiarity

scores, a combination score ignoring top word criterion, a

unique identifier for the term, and a unique identifier for

the concept. For this work, we utilized only the text of the

term and the associated UMLS name or “meaning”. There are

58, 445 unique UMLS meanings in the CHV.

III. TASK DEFINITION

We approach the problem of expanding the CHV from a

dictionary expansion perspective. Each term in the CHV is

analogous to an entry in a dictionary, and we chose the UMLS

concept associated with the term as the analog to the definition

or meaning of a dictionary entry. Our goal was two-fold:

one, analyze user-generated text to identify phrases similar

to existing CHV terms, and two, create a mapping for the

discovered terms to existing UMLS concepts.

IV. EXISTING WORK

Since the inception of the OAC CHV project, the utility

and potential of a lexicon of consumer health terms has been

obvious to the medical informatics community. Early work

on discovering CHV terms relied on Parts-of-Speech (POS)

tagging and legacy Named Entity Recognition (NER) sys-

tems [3] to extract vocabulary terms from the web. Alongside

websites and communities dedicated to healthcare, resources

such as Wikipedia were also utilized to identify potential

terms, also utilizing conventional NER and pattern-matching

techniques [4]. Large scale collection of social media data and

the combination of POS tagging, n-gram collection, and term-
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TABLE I
THE NUMBER OF POSTS, COMMENTS, AND USERS IN DATASETS

EXTRACTED FROM MEDHELP

Disease Posts Comments Users

Glaucoma 1, 496 4, 534 1, 436
Diabetes 1, 498 6, 658 2, 578
Breast Cancer 1, 257 8, 963 3, 364
Parkinson’s Disease 1, 495 4, 948 1, 927

Total 5, 746 25, 103 9, 305

and document-frequency analysis methods yielded promising

results for generating CHV suggestions [5]. With the de-

velopment of the UMLS Metathesaurus, a large collection

of medical concepts were aggregated from across numerous

distinct vocabularies. The UMLS, as a valuable resource,

provided the opportunity to explore consumer vocabulary use

of UMLS concepts [6]. Manual mapping of CHV terms to

UMLS concepts demonstrated this potential, but also found

some CHV terms were not mappable to the UMLS [7].

Feature-based unsupervised machine learning algorithms such

as k-Nearest Neighbor clustering have been utilized to con-

struct semantic similarity models for mapping CHV terms

to UMLS concepts [8]. Most studies have utilized tried-and-

tested, traditional NLP tools relying upon familiar concepts

such as POS, n-grams, external contexts of words and phrases,

and frequency measures.

V. HEALTH COMMUNITY FORUM DATA

Due to the popularity of social media in recent years,

the online health community (OHC) has drawn significant

attention. Many health consumers, caregivers, and health pro-

fessionals are participating in the OHC to exchange health-

related information. MedHelp,1 as a pioneer among the OHC

websites, is home to over 170 health communities and attracts

more than 12 million health consumers to participate in health-

related discussions every month. We developed an automatic

web crawler to collect data for expanding the CHV from

MedHelp. The crawler fetched the MedHelp website of each

community in HTML format page by page and extracted

information including user, post, comment, and timestamp

by parsing the HTML. The extracted data was organized

thread by thread, where each thread contained the original

post and comments on the post as well as the corresponding

user IDs and timestamps, and saved in text format for each

community. In this particular work, we utilized the crawler to

extract datasets from four disease communities including (a)

glaucoma, (b) diabetes, (c) breast cancer, and (d) Parkinson’s

disease. The number of posts, comments, and users in each

dataset is presented in Table I.

VI. MODEL

The developed algorithm relies upon the implementation

of a frequency-preserving context model [9]. We consider

phrases, rather than words, as the primary semantic unit. Word

1www.medhelp.org

TABLE II
AN EXAMPLE OF INTERNAL CONTEXT GENERATION

Residue Subphrase (s) Pq(s | t)
cell transplant stem q
stem transplant cell q2

stem cell transplant q
transplant stem cell q(1− q)

stem cell transplant q(1− q)
<empty> stem cell transplant (1− q)2

boundaries are identified using the method defined in [10],

which are critical to the task of generating phrase contexts.

Subsequently, the input tokens are partitioned into phrases

using the partition process defined in [11].

The chance of a boundary between words being split is mod-

eled as a random probability q. Consequently, the probability

of a boundary not being split is (1 − q). For example, given

the input sentence t = “A stem cell transplant is a potential

treatment.”, the probability that the phrase s = “stem cell

transplant” is randomly partitioned is

Pq(s | t) = q2−b(1− q)‖s‖−1 = q2(1− q)2,

where b is the total number of sentence boundaries shared by

s and t, and ‖s‖ indicates the number of words in the phrase,

s. Summing these partition probabilities across all sentences

in a document, t ∈ D, provides us with the raw frequency of

a given phrase in the document:

f(s) =
∑

t∈D
Pq(s | t).

Intuitively, f(s) descirbes the average number of times the

phrase s is cut out of a document D if all cuts are made along

word boundaries with a random probability q.

Maximum phrase size n is an arbitrary parameter of the

model. For the experiments conducted in this work, we set

n = 5. The computational cost of the algorithm depends

heavily on the value of n. Since the average phrase length

in the existing CHV was approximately 3 and the standard

deviation for phrase size was approximately 2, maximum

phrase length of 5 was chosen. We define external contexts of

a phrase as the word patterns occurring adjacent to the phrase

in a sentence. Rather than co-occurrence of external contexts,

as commonly utilized in applications based on sliding-window

n-grams, we utilize internal contexts to find similar phrases.

We define the internal contexts of a phrase through the patterns

generated by the removal of subphrases. For example, Table II

demonstrates the generation of internal contexts as residues—

patterns left by the removal of a subphrase—from “stem cell

transplant”, a phrase with size n = 3. By removing subphrases

of size r ≤ n, a set of unique internal residue contexts can

be generated. When r = n, i.e. the entire phrase has been

removed, the resulting residue context is “empty”.

Residue contexts were the extent of contexts explored in [9].

Going further in this work, we explored the concept of dual
contexts of a phrase for the construction of this model. Specif-

ically, a given removed subphrase is the dual context to the
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Fig. 1. Diagram illustrating the concept of context duality. Each residue
context formed by the removal of a subphrase has a dual context, which is
the subphrase that has been removed. This relationship between residues (left
tree) and their duals (right tree) is illustrated by red arrows. The frequency
associated with the phrase, f , is distributed evenly between residues and their
dual subphrases.

residue it generates. In general, this dual context architecture

provides more relations between phrases than the restriction

to residues. This is illustrated in Fig. 1. The tree on the left,

consisting of residues, shows the context relations utilized in

previous work. By adding dual contexts, we obtain additional

subphrase contexts and relations, which constitute the right

tree.

Context frequencies are produced by a secondary partition

process as in [9]. For the phrase t = “stem cell transplant” and

partition subphrase s, the distribution of the phrase frequency,

f(t), is balanced by the subphrase partition probability, Pq(s |
t), as in Table II. In particular, we induce joint frequencies

from the random partition function as f(s, t) = f(t)Pq(s |
t)‖s‖. From [11] we know:

‖t‖ =
∑

s∈D
Pq(s | t)‖s‖,

which provides us with

f(t)‖t‖ =
∑

s∈D
f(t)Pq(s | t)‖s‖,

inducing a joint-probability normalization, M , equal to:
∑

t∈D

∑

s∈D
f(s, t) =

∑

t∈D

∑

s∈D
f(t)Pq(s | t)‖s‖ =

∑

t∈D
f(t)‖t‖.

Thus, from [11] we know M is equal to the total number of

words present in the document. The values f(s, t)/M nor-

malize to a joint probability distribution on phrases and sub-

phrases, originally explored in [9]. Here, our dual, subphrase-

residue enhancement splits the frequencies of f(s, t) 50-50.

Specifically, for a context, c, and phrase, t, we sum half of

the joint frequency of any subphrases, s, contained in t which

are:

1) equal to c, and whose

2) removal from t leaves a residue, rst equal to c:

P (c, t) =
1

2M

∑

s∈D
f(s, t)

∣∣∣∣∣
s,rst=c

.

Combining the joint probability function, P (c, t), on con-

texts, c ∈ C, and phrases, t ∈ S with Bayes’ rule makes

computation of the conditional probabilities P (c | t) and

P (t | c) a straightforward quotient with marginal probabilities.

This allows us to compute likelihoods:

D(C | s) =
∑

c∈C
P (c | s)

∑

t∈S
D(t)P (t | c),

for D(t), the dictionary indicator from [9]. For us, D(t) = 1
if t is in the CHV and D(t) = 0 otherwise. Candidate phrases

were ranked according to the likelihood scores D(C | s) to

produce a list of suggested terms for inclusion in the CHV.

We performed a similar conditional probability calculation

to generate a mapping to UMLS concepts already present

in the CHV. We assessed the likelihood of every possible

mapping m for a given phrase by defining a UMLS-concept

indicator function, Dm(t), which has value 1 if the phrase t
has UMLS concept mapping m and 0 otherwise. The proposed

mapping for a given CHV prediction, t, is then:

mmax(t) = argmax
m

(Dm(C | t)).

VII. EXPERIMENTAL DESIGN

In order to ascertain the performance and viability of

the algorithm, we designed cross-validation experiments by

removing randomized portions of the CHV and training the

model on the reduced CHV. The reserved fraction of the

CHV was used as a test set for the trained model to generate

performance estimates. Generally, in a supervised learning

system, a ground-truth test dataset is used to evaluate model

performance. However, the task at hand was defined as lexical

expansion, not straightforward classification or regression.

The ground-truth performance data could only be obtained

by enlisting a team of experts to evaluate the term-concept

suggestion set. As an alternative statistical approach, we

designed an experiment methodology that allowed for limited

but automatic estimation of model performance.

Along with the four datasets introduced in Section V, we

combined the text from these communities to form a fifth

dataset. Conducting similar experiments on discrete sets as

well as the combined dataset allowed us to investigate perfor-

mance variation as a function of topical specialization versus

generality. We performed 10- and 20-fold cross-validation

evaluation experiments on all five sets, resulting in a total of 10
unique experiments. The training data was composed of two

distinct parts: the CHV lexicon and the community-generated

text. The CHV contains 152, 336 terms in total, and in a 10-

fold experiment, approximately 15, 234 terms are reserved in

the test set. In a 20-fold evaluation, 7, 617 terms are reserved.

This allowed us to train and test the model on training and

test sets of different size and make observations regarding the
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TABLE III
EVALUATION OF MODEL PERFORMANCE

Dataset Experiment A σA � σ� P� Pmax �(Pmax) P100

Breast Cancer 10-fold 0.9706 0.0021 80943.1000 8119.0950 0.0086 0.2554 49.7000 0.0840
Breast Cancer 20-fold 0.9726 0.0020 81076.3500 8592.5926 0.0043 0.1393 88.1500 0.0400
Diabetes 10-fold 0.9721 0.0017 84904.7000 4661.1862 0.0083 0.5467 9.3000 0.0840
Diabetes 20-fold 0.9745 0.0021 85125.0000 10600.3081 0.0042 0.3735 15.0000 0.0490
Glaucoma 10-fold 0.9704 0.0035 59275.1000 6177.5415 0.0098 0.3948 15.9000 0.0770
Glaucoma 20-fold 0.9724 0.0022 57907.3500 7910.6703 0.0051 0.3020 87.2000 0.0410
Parkinson’s 10-fold 0.9708 0.0021 130844.8000 7916.0589 0.0081 0.5271 2.3000 0.1210
Parkinson’s 20-fold 0.9738 0.0021 131167.6000 11567.2312 0.0041 0.3797 31.6500 0.0695
Combined 10-fold 0.9747 0.0017 312636.3000 14533.6355 0.0052 0.7093 2.5000 0.1230
Combined 20-fold 0.9771 0.0015 305341.3500 25482.3732 0.0027 0.4549 17.5000 0.0615

effect of varying the train-test split of the CHV on model

performance. There would always be a small (compared to

the size of the test set) overlap between the test set of CHV

terms and the input set of terms. Only the test terms present

in the overlap would be recoverable by the model. Thus, the

true evaluable test set consisted of the recoverable terms.

Ultimately, since CHV terms encode precise medical termi-

nology, our goal is not to produce a model whose output would

directly be incorporated into the CHV. There is no margin for

error, i.e., the CHV is intended to be a 100% reliable resource,

like a dictionary. Thus, the goal of this experiment and its

evaluation is to generate high-quality short lists that can be

presented for human inspection. As a result, optimization of

recall or F1 are out of alignment with this task.

We obtained an unconventional measure of precision for the

experiments. The evaluation scheme was designed to update

the counts for true positive tp, false positive fp, true negative

tn, and false negative fn step by step, going through the

suggested phrases one at a time, ranked from most likely

to least. Since the model assigned likelihood scores to every

phrase present in the input data, eventually this process would

cover the entire training list of terms. Progressing through the

list would be analogous to a serial generation of suggestions,

starting from the best prediction. Model performance would

begin from tp = 0, fp = 0, tn = ntest − neval, and

fn = neval, where ntest is the number of terms in the

full, reserved portion of the CHV, and neval is the number

of terms in the actual evaluable set. When the model would

suggest a term that was present in the evaluable test set, the

suggestion would be categorized as a true positive prediction,

also resulting in a decrease of the false negative count. For

every suggestion that would not belong to the evaluable set, the

false positive count would increase and the true negative count

would decrease. Due to this serial updating of the confusion

metrics, it was possible to obtain precision along with the true

positive rate and false positive rate as functions of list length,

�, the index of the list of suggestions.

The evaluation metrics gained from this system were un-

derestimates of model performance, since suggested terms not

present in the evaluable set could potentially be candidates

for addition to the CHV; however, this would be a subjective

judgment best left to an expert evaluator.

VIII. EVALUATION

We constructed Receiver Operating Characteristic (ROC)

curves for model performance on each dataset for both 10-

and 20-fold evaluation. The evaluation results from all 10
experiments conducted are presented in Table III. The metrics

presented are: mean area under the ROC curve (AUC) A,

standard deviation of AUC σA, mean list length of the AUC-

optimal models �, standard deviation of list length of the

AUC-optimal models σ�, mean precision of the AUC-optimal

models P�, mean maximum observed precision Pmax, mean

list length for maximum observed precision �(Pmax), and

mean precision at � = 100, P100.

The AUC measure, A, provides an overall sense of model

tunability. A value of this measure near 0.5 would indicate

near-random predictions. Thus, the values we observe near

0.97 indicate a highly non-random model. Moreover, these

values appeared extremely consistently, with standard devia-

tion, σA, hovering near 0.002 in all experiments. This indicates

the model’s robustness to topical specialization. While AUC

analysis can provide some sense of optimal model tuning,

the realism of this optimality is checked by both the very

high “optimal” values of list length, �, and the low values of

precision at this point. Implementable list lengths must in fact

be much shorter.

As stated in Section VII, this numeric evaluation is an

underestimate of the potential of the model in terms of

generating suggestions for inclusion in the CHV. The precision

value peaks at relatively small list lengths, due to the small

number of false positives at the top of the suggestion list.

This evaluation suggests that combining datasets leads to the

achievement of better performance, possibly due to generaliza-

tion of topic areas. The P100 metric is most strongly indicative

of model performance. By observing P100, the average fraction

of false positives at list index 100, with respect to 10- and

20-fold evaluation, we note the possibility for a functional

relationship between P100 and the size of the evaluable test set,

i.e. the total number of recoverable terms. The prediction of

such a number presents an exciting path forward. Presumably,

this relationship is sublinear and asymptotic, if it exists. In

order to establish an accurate diagnostic of performance, the

true value of P100 must be determined through an expert

evaluation.

244

Authorized licensed use limited to: Drexel University. Downloaded on August 30,2020 at 16:57:42 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
TOP 100 TERM AND CONCEPT SUGGESTIONS FROM COMBINED DATASET

t mmax(t)

sentinel lymph nodes lymph node
peripheral vessels blood vessel
blood cell membranes cell membrane
white blood cell counts blood cell count
associated tissue associated
left iliac left
immune disorder disease
glucose poisoning glucose
male breast tissue male breast cancer
intraocular hypertension pressure in eye
cervical degeneration cervical
gastric region region
left breast carcinoma breast cancer
inguinal nodes node
anterior muscle muscle
retinal nerve nerve
intracranial flow inside of the head bone
adjacent tissue next
survival expectancy life expectancy
renal cell cell
mammary carcinoma mammary gland
narrowing artery narrow
ectopic atrial rhythm Atrial Premature Complex (APC)
macular membrane membrane
vein stenosis abnormal narrowing
epidermal growth egf
hormonal receptor hormonal
sentinel lymph sentinel node
resting potentials monitoring evoked potentials
immune disorders disease
peripheral scotomas peripheral
aortic wall aorta
sinus retention nasal sinus
restless spine restless leg syndrome (RLS)
left gland left
optic tumors optic nerve
rotator surgery tendon of the shoulder joint
hormonal carcinoma carcinoma
chronic ear ear
sentinel nodes sentinel node
glucose intolerant glucose
right heart block heart block
secondary hypertrophy secondary
kidney artery artery
restless night restless leg syndrome (RLS)
mitral heart mitral valve
left breast cancer breast cancer
ovarian cells cell
irregular heart rhythms irregular heart beat
associated pain associated
visual blindness visual field
breast cell cell
visual side visual field
retinal disorders disease
aortic bicuspid aorta
visual therapy visual field
blood pregnancy pregnancy
lymph circulation lymph node
corneal tissue tissue
optic nerve cells optic nerve
serum glucose levels serum glucose
hematopoietic stem hematopoietic
male breast cancers male breast cancer
cell carcinoma cell
muscle palsy muscle
cell arteritis cell
left anterior horn anterior horn
tolerance tests tolerance test

t mmax(t)

hormone disorder disease
needle aspiration biopsy fine needle aspiration
cerebral spinal spinal
glucose syrup glucose
breast history history
restless arm restless leg syndrome (RLS)
lymph cancer lymph node
optic nerve tissue optic nerve
retinal vessel occlusion retinal vessel
pleural membranes membrane
visual evoked visual field
peripheral artery disease coronary heart disease
urinary test test
pancreatic failure personal failure
lymph glands lymph node
cardiac history history
visual tests visual field
left artery left
hematopoietic stem cell transplantation hematopoietic stem cell
pulmonary vessels blood vessel
cerebral blood blood
blood glucose homeostasis glucose homeostasis
iliac nodes node
babinski babinski reflex
health worker health
valve insufficiency insufficiency
muscle enzymes muscle
stem cell transplant stem cell
gold turkey gold standard
atrial contractions upper chambers of the heart
corneal vessel blood vessel

For reference, we present a list of the top 100 suggested

terms and the suggested UMLS concept (i.e. the closest UMLS

concept from among those occurring in the existing CHV

according to the algorithm) for each term from running our

model on the complete CHV and the combined dataset in Table

IV.

IX. CONCLUSION

In this work, our goal was the development of an algorithm

for automatic detection of candidate CHV terms from user-

generated text on online health forums. The model does not

aim to discover term suggestions for the CHV that are com-

pletely unrelated to existing terms. Rather, it was designed to

detect phrases that are structurally and semantically similar to

existing terms in the CHV. Thus, many of the suggested terms

are more specific variations of existing CHV terms. In addition

to surfacing term suggestions, the algorithm also identifies

the UMLS concept that serves as the closest interpretation

for each suggested term. The suggested UMLS concepts are

usually more general compared to the term suggestions. At

a glance, this seemingly suggests that the UMLS requires

expansion to include more concepts. However, the full UMLS

consists of more than 3.1 million concepts, as opposed to

the 58, 445 concepts present in the 152, 336-term CHV [12].

Thus, further development of CHV expansion in this vein must

handle mapping the UMLS separately from the CHV in order

to allow a more comprehensive concept-suggestion component

of the system. Thus, we expect our model’s predicted UMLS

concepts would serve as a point of entry into the larger
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semantic space where a more accurate concept mapping would

be found.
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