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We propose a modification of a NALM-based 2R regenerator of phase-encoded signals which operates at con-
siderably lower input powers than was studied earlier. Our modification consists of replacing the core-
matched and lossless fiber coupler in the NALM by a coupler with a propagation constant mismatch and
loss asymmetrically distributed between the two cores. The performance of the modified regenerator and
the one studied earlier is approximately the same.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All-optical 2R regeneration (re-amplification and re-shaping) is an
important technology for the development of next-generation optical
networks, and many different 2R architectures have been proposed
and demonstrated [1], including ones based on nonlinear interferom-
eters, on self-phase- or cross-phase-modulation (SPM or XPM,
respectively) followed by spectral filtering, on gain saturation or
saturable absorption, etc. While the 2R regenerator based on SPM
followed by spectral filtering [2–4] is the simplest and most robust
choice for processing on–off keying signals, it is not suitable for
phase-encoded data, because of its propensity to dramatically
increase the phase fluctuations through intensity-to-phase noise
conversion. On the other hand, the regenerators based on nonlinear
fiber interferometers [5,6], after some modification, have a potential
for processing phase-encoded signals.

Recently, a 2R regeneration scheme for phase-encoded signals
based on a nonlinear amplifying loop mirror (NALM) was proposed
and investigated [7–11]. Such a regenerator is capable of suppressing
amplitude jitter without affecting the phase of the signal. This
improves the signal quality in two ways. First, since both amplitude
and phase fluctuations affect the eye opening of a phase-encoded
signal at the receiver, suppression of the amplitude jitter increases
the eye opening and hence reduces the bit error rate (BER). Second,
the fiber's Kerr nonlinearity converts amplitude fluctuations into
phase ones, which then rapidly accumulate with the propagation dis-
tance [12]. Such phase fluctuations caused by the Gordon–Mollenauer
effect are often referred to as nonlinear phase noise. Then, reducing

the fluctuations at, say, the midpoint of the transmission line will pre-
vent creation and accumulation of the nonlinear phase noise. This will
further reduce the BER of the received signal. Effectiveness of the
NALM for regenerating phase-encoded signals was demonstrated nu-
merically [7,8] and experimentally [9,10,13].

A drawback of the NALM-based regenerator described above is a
high input (and output) power required for its operation. For
example, for the parameters similar to those used in [13], the input
peak power is about 200 mW, and output peak power is higher
than 10 W; see Fig. 2 below. However, only on the order of 1 to
10 mW of the regenerator's output can be re-launched into the
transmission line; the rest of the output will have to be damped (i.e.
wasted). A method to shift the operation point of the NALM in
order to lower those high powers was proposed in [11]. It is based
on adjusting the signal polarization inside the NALM (a similar princi-
ple was earlier proposed in [14,15] for a different application).
However, if the NALM-based regenerator is to be used in telecom
applications, active adjustment of polarization in it would be
impractical.

In this paper we propose a different method of shifting the NALM's
operating point, which does not require control of either polarization
or any other quantity that would be difficult to monitor in a telecom
application. Our method, instead, requires a modification of the fiber
coupler in the NALM. Specifically, we propose to use a coupler whose
two cores have different propagation constants and, in addition, one
(but not both!) of the cores has a considerable amount of dissipation.
Most commercial applications require that precisely these properties
of the coupler – the core mismatch and dissipation – be minimized,
i.e. the cores are to be identical and should exhibit no losses [16]. It
is, therefore, surprising that these usually undesirable properties of
the coupler allow one to reduce the input power to a NALM-based
regenerator by almost two orders of magnitude.
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In what follows we will use a shorthand for a coupler without
the mismatch and dissipation, referring to it as the “conventional”
coupler, as opposed to the modified coupler whose utilization we
propose in this work.

In Section 2 we outline a theory of a NALM with the modified cou-
pler and estimate what parameters of the coupler would allow one to
shift the regeneration point into the low-power regime. In Section 3
we verify these estimates by numerical simulations that account for
both the nonlinearity and the dispersion of the NALM's highly non-
linear fiber (HNLF). In particular, we determine ranges of the cou-
pler's parameters where phase-preserving amplitude regeneration
with low input power is achievable. We also show that the eye open-
ing of the signals regenerated in this low-power regime and in the
high-power regime considered in [7,9–11,13] is about the same.

2. Theory of a NALM-based regenerator with the modified coupler

In this section we will: (i) Present a transfer matrix of a coupler
with mismatched cores and asymmetric dissipation; (ii) Derive equa-
tions of a NALM with such a coupler; (iii) Estimate the range of the
coupler's parameters where the NALM can act as a regenerator for
low input power, and (iv) Verify these estimates by a quick simula-
tion that ignores fiber dispersion.

2.1. Modified coupler

The standard coupled-mode equations of a coupler in question are
(see, e.g., [17,18]):

∂zE1 ¼ iΔE1 þ iκE2
∂zE2 ¼ iκE1− iΔþ μð ÞE2:

ð1Þ

Here ℰ1,2 are the electric fields in the two cores of the coupler, κ
and Δ are the coupling and propagation-constant mismatch between
the cores, and μ is the dissipation introduced into one of the cores. The
solution to these equations is:

E1
E2

� �
out

¼ e−μz=2 cos ρzþ i sin ψ sin ρz i cos ψ sin ρz
i cos ψ sin ρz cos ρz−i sin ψ sin ρz

� � E1
E1

� �
in
;

ð2aÞ

where

ρ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xþ iyð Þ2

q
; x ¼ Δ

κ
; y ¼ μ

2κ
; sin ψ≡Δþ iμ=2

ρ
; cos ψ≡ κ

ρ
: ð2bÞ

Thus, ρ and ψ are, in general, complex-valued parameters. Note
that while dissipation acts only in one of the cores, it reduces the en-
ergies of the field in both cores via coupling. In the absence of core
mismatch and dissipation, one has x=y=0 and hence ρ=κ and
ψ=0. Then cos2 κz :sin2 κz is the power-splitting coefficient of the
conventional coupler.

Let us now comment on the feasibility of experimental implemen-
tation of a coupler governed by Eq. (1). Core mismatch can be
achieved by using cores with slightly different diameters. Dissipation
can be introduced into one of the cores by, e.g., writing a long-period
Bragg grating which can be designed to excite a leaky mode causing
energy loss. Since this modification of the coupler can be implemen-
ted without breaking the circular symmetry of the cores' cross-
sections, then it will not introduce polarization dependence to the
coupler. Thus, at least conceptually, such a modified coupler will not
require any polarization control inside the NALM, as we have
announced in the introduction.

2.2. Equations of the NALM and their analysis

The fields immediately after the coupler (see Fig. 1) satisfy:

E3
E4

� �
in
¼ A E1

E2

� �
in
≡A E

0

� �
; ð3Þ

where A is the product of exp(−μz/2) and the matrix in Eq. (2a).
Upon passing through the loop and just before the coupler, these
fields become

E3;4
� �

out
¼

ffiffiffiffi
G

p
E3;4

� �
in
exp iϕ3;4

� �
; ð4Þ

provided that the HNLF's dispersion has been ignored. The phases
ϕ3, 4, acquired due to the fields' passing through the HNLF, are:

ϕ3 ¼ γL E3inj j2 þ 2G E4inj j2
� �

ϕ4 ¼ γL G E4inj j2 þ 2 E3inj j2
� �

:
ð5Þ

Here γ and L are the nonlinearity coefficient and length of the
HNLF and G is the gain of the amplifier inside the loop. In the first
of Eq. (5), the first term occurs due to SPM of the signal, and the
second term, due to XPM by the counter-propagating signal, and sim-
ilarly for the second equation. The overbar denotes time averaging:
thus, |E|2 denotes instantaneous power, while E 2jj stands for its
time-averaged value. If, furthermore, we identify |E|2 with the signal's
peak power, then for phase-encoded signals,

Ej j2 ¼ d Ej j2; ð6Þ

where d is the duty cycle of the pulses.
The fields at the output of the NALM are found from a counterpart

of Eq. (3):

E1
E2

� �
out

¼ A
E4
E3

� �
out

: ð7Þ

Note that in writing Eq. (7), the asymmetry of the coupler due to
dissipation being present only in one of its cores (see Eq. (1)) dictates
the order in which the fields enter the equation. That is:

E2
E1

� �
out

≠A E3
E4

� �
out

: ð8Þ

Using Eqs. (2a)–(7), one obtains the following expressions for the
output fields:

E2out ¼ e−μz ffiffiffiffi
G

p
cos2 ρzþ sin2 ψ sin2ρz

� �
eiϕ3− cos2 ψ sin2 ρz

� �
eiϕ4

h i
E;

ð9aÞ

E1out ¼ e−μzi
ffiffiffiffi
G

p
cos ψ sin ρz cos ρzþ i sin ψ sin ρzð Þ eiϕ3 þ eiϕ4

� �
E: ð9bÞ
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Fig. 1. Schematics of the NALM-based regenerator.
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Field E1out is that reflected by the NALM, while E2out is the one
transmitted. It is interesting to note that for μ≠0, |E1out|2+|E2out|2≠
G|E|2 exp(−2μz), and moreover, even |E3in|2+|E4in|2≠ |E|2 exp
(−μz).

Before analyzing how the regenerated signal E2out depends on pa-
rameters Δ and μ in Eq. (1), we state its form for the conventional
coupler, i.e. that with Δ=μ=0 (and hence with ρ=κ), used in earli-
er studies:

E2out ¼
ffiffiffiffi
G

p
cos2κz eiϕ3−sin2 κz eiϕ4

� �
E: ð10Þ

In Fig. 2 we show (with the solid line) the corresponding peak
power, |E2out|2, and phase,

arg E2outð Þ−2γL E3inj j2 þ G E4inj j2
� �

; ð11Þ

in Appendix A we explain the reason for subtracting the last term
in Eq. (11). Parameters for the plots in Fig. 2 are similar to those
used in, e.g., [13]: γ=2.5 W−1km−1, L=2 km, d=0.05 (5-ps
pulses with 10 Gb/s repetition rate), G=100, and κz=0.33
(corresponding to the power-splitting ratio of the coupler of
cos2 κz :sin2 κz≈0.90:0.10). The range of input powers – |E1in|2

from about 0.12 to about 0.14 W in this case – where the power and
phase plateaus overlap, is the operating range of the NALM-based

regenerator. This is because both the power and phase of regenerated
pulses remain almost constant for any value of the input power |E1in|2

within such a range. The interval of κz values where these plateaus
overlap is, for the parameters listed above, approximately (0.30,0.40).

Belowwe discuss how parameters μ and Δ in Eq. (1) should be cho-
sen to shift the operating power of the regenerator to a significantly
lower value. We will first show how to shift the plateau in the power
transfer curve, and then indicate how the plateau in the phase curve
can be shifted along. For low input powers, when ϕ3 and ϕ4 are close
to zero, so is the relative phase between the two terms in Eq. (10):

arg eiϕ3cos2 κz
� �

−arg eiϕ4 sin2 κz
� �

≈0: ð12aÞ

As Fig. 2 illustrates, there is no plateau in the power transfer curve
for low input powers. Instead, the plateau occurs when the phase dif-
ference between the aforementioned terms approaches π:

arg eiϕ3cos2 κz
� �

−arg eiϕ4 sin2 κz
� �

≈π: ð12bÞ

This observation provides a hint as to how μ andΔ need to be chosen
in Eq. (1) to create a power plateau at low input powers. Namely, the
relative phase between the two terms in Eq. (9a) needs to be close to π:

arg cos2 ρzþ sin2 ψ sin2 ρz
� �

−arg cos2 ψ sin2 ρz
� �

≈π; ð13Þ

where we have used the fact that for low input powers, exp(iϕ3)≈exp
(iϕ4)≈1. Having chosen μ and Δ so as to ensure the key relation (13),
we will then verify, by inspection, whether the phase transfer curve
has a plateau in a range of input powers where the power transfer
curve does.

As a first step in implementation of the program outlined above,
we note that if μ=0 and Δ≠0, then in Eq. (2b), ρ and ψ are real,
and hence Eq. (13) cannot be satisfied. Next, since the case where
both μ and Δ are nonzero is too complicated, we now analytically con-
sider the case μ≠0, Δ=0 and will later explore numerically the
consequences of having Δ≠0. For μ≠0 and Δ=0, sinψ is purely
imaginary, while cosψ is real (provided that y=μ/2κb1, which we
will always assume in order not to have too much dissipation in the
coupler). Then Eq. (13) will be satisfied when

cos2 ρz− sin2 ψ
��� ���sin2 ρz b0; ð14Þ

which requires that: (i) ρz be close to π/2 and (ii) |ψ| be not too small.
Making these general, but rather vague, recommendations precise
requires numerical simulations, which should also include the effect
of Δ≠0 on the power and phase transfer curves.

In Fig. 3 we plot such curves, obtained from Eq. (9b), for selected
values of parameters x, y, κz (see Eq. (2b)). As announced earlier,
the input powers required for plateau existence are on the order of
a few milliwatts, i.e. more than an order of magnitude less than
required for the earlier-studied setup; compare with Fig. 2. As a side
note, let us point out that flatter plateaus can be obtained if one
adjusts the value of x for a given value of y. However, in Fig. 3 we
intended to emphasize that a single value of x can work for a range
of y values.

Another potentially useful property of the regenerator with the
modified coupler is that it is much less demanding of the gain G of
the amplifier inside the NALM (see Fig. 1). In [11] it was pointed out
that the regenerator with the conventional coupler must employ an
amplifier with gain of at least 17 dB to achieve simultaneous plateaus
in the power and phase transfer curves. We actually observed eye
opening improvement (see Section 3) of about 1.0 dB of a signal
regenerated by the earlier-studied setup with G=13 dB, but were
unable to obtain any considerable eye opening when the gain became
less than 10 dB. On the other hand, the regenerator with the modified
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Fig. 2. Power (a) and phase (b) transfer curves of the earlier studied model with a “con-
ventional” coupler with no core mismatch and no dissipation (Δ=0, μ=0). The solid
and dotted lines correspond to the dispersionless and dispersive cases considered in
Sections 2 and 3, respectively. Parameter κz equals 0.33 and 0.38 in the dispersionless
and dispersive cases, respectively, and the other parameters are specified in the text.
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coupler can operate even with G as low as 3 dB. The corresponding
transfer curves look similar to those shown in Fig. 3 and therefore
are not displayed; the only obvious difference is that the input
power is greater than in Fig. 3 by a factor between 50 and 100.

We now comment on the amount of energy loss occurring in the
coupler. The signal power after passing through the coupler once
is proportional to exp(−μz). Thus, for κz=1.3 and y=0.3,
μz=2κz⋅y≈0.78, so that energy dissipation after one pass through
the coupler is less than 3.5 dB. Even smaller dissipation – less than
2.5 dB – would occur for κz=1.3 and y=0.2. This rather moderate
amount of energy loss may be a reasonable alternative to using a
much higher input power.

To conclude this section, let us emphasize that the regenerator's
operating in a low power regime by no means suggests that this re-
gime is linear. It is evident from Fig. 3 that a certain minimum
power is still required for the existence of the plateau in the power
transfer curves. This minimum power is considerably lower than
that in the regenerator proposed in [7] because for the regenerator
with the modified coupler, the “birth” of the plateau is facilitated by
relation (13).

3. Numerical verification

Here we will first consider the effect of dispersion of the NALM's
HNLF on the solutions obtained in the previous section. Then we
will demonstrate that the NALM-based regenerator with a coupler
described by Eq. (1) can indeed improve the quality of differential
phase-shift-keyed signals. As in Section 2, we use the regenerator pa-
rameters as in [13], explicitly listed after our Eq. (11). In addition to
these parameters, we set the fiber dispersion to −2 ps/nm/km and
postcompensate the output signal by 4 ps/nm. To account for the

fiber dispersion, we solve the nonlinear Schrödinger equation with
input fields (E3, 4)in instead of using Eqs. (4), (5).

The respective counterparts of results for the dispersionless cases
depicted in Figs. 2 (solid lines) and 3 are shown in Figs. 2 (dotted
lines) and 4. For the earlier-studied regenerator employing a coupler
with no mismatch and dissipation, fiber dispersion is seen to have a
considerable effect on the transfer curves; note also that the coupler
splitting-ratio parameter κz had to be adjusted to reduce the differ-
ences between the curves in the dispersionless and dispersive re-
gimes. On the contrary, dispersion is seen to have only minor effect
on the transfer curves for the regenerator employing a modified
coupler.

In Fig. 5 we show the input and regenerated signals to the regen-
erators employing the conventional and modified couplers. The sim-
ulated input is a 27–1-pulse pseudo-random bit sequence with
amplitude jitter of ±30% and no phase jitter. There is no optical filter
at the receiver, and the electrical filter's bandwidth is 20 GHz. The
values of the coupler parameters and the average1 input peak powers
are listed in the caption to Fig. 5, and the remaining parameters have
been listed earlier in Sections 2 and 3. The eye opening is measured
with respect to a 3-ps “window” fitted inside the electrical eye, with
the input and regenerated signals being normalized to have the
same time-averaged power. The eye openings of the outputs of the
regenerators with the conventional (Fig. 5b) and modified (Fig. 5c)
coupler are both 1.0 dB. The former “eye” looks a little noisier, but re-
sults in the same eye opening improvement as the latter “eye”,
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Fig. 3. Power (a), (c) and phase (b), (d) transfer curves of a dispersionless regenerator employing the modified coupler with: κz=1.3, x=1.0 (a), (b); κz=1.6, x=0.85 (c), (d). The
solid and dashed curves correspond to y=0.2 and y=0.3, respectively. Note that the horizontal scale here is in milliwatts, while in Fig. 2 it is in watts.

1 Note the difference between two similar terms. Average peak power refers to the
averaging over peak powers of all pulses; it does not depend on the duty cycle d. In
contrast, time-averaged power refers to the averaging of the signal power over time
and is proportional to d.
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because the regenerated pulses in the former case are slightly
narrower than those in the latter case.

Following up on the observation, made in Section 2, that the re-
generator with a modified coupler can operate with the amplifier's
gain in the NALM being as low as 3 dB, we also simulated the case
with the same parameters as in Fig. 5c except that G=3 dB. For the
input peak powers in the range from 190 to 230 mW, we found the
eye opening of the regenerated signal to be at least 1.0 dB. (The eye
diagram looks almost identical to that in Fig. 5c.) The above range
of input power is comparable to that for the regenerator with the
conventional coupler, but now the device uses a low-gain amplifier
and hence still has considerably lower energy consumption than
that studied in [7–11,13].

Finally, in Fig. 6 we illustrate how varying the modified coupler's
parameters affects the performance of the regenerator. For a given
pair (y, κz), we searched for such a value of the input power that
the interval of x-values where the eye opening is at least 1.0 dB, is
the widest. The endpoints of those intervals are plotted in Fig. 6a
and the corresponding input peak powers, in Fig. 6b. If the input
power deviates slightly from the plotted optimal value, then xmin

and xmax also change, but the width, xmax−xmin, of the x-interval,
remains approximately the same. If we now remove the restriction
that the input power be fixed for all the x values in those intervals,
but instead adjust it for each given x, then, naturally, the range of
the corresponding x values for a given pair (y, κz) is wider than
shown in Fig. 6a.

4. Conclusions

We have proposed a method to reduce by more than an order of
magnitude the input power to the phase-preserving 2R amplitude

regenerator studied in [7–11,13]. Our method is based on replacing
the conventional fiber coupler in the NALM of that regenerator by a
coupler with certain amounts of propagation constant mismatch
between, and asymmetric dissipation in, the two cores, as described
by Eq. (1). Such a modification to the coupler does not require any
polarization control. The reason why the input power required for
regeneration is considerably lower than in the previously studied
setup is explained around Eq. (13). Namely, the additional degrees
of freedom provided by the modified coupler enable – already at
low operating powers – approximately a π-shift between the phases
of the fields interfering at the NALM's output, whereas with the
conventional coupler, such a shift can only be attained at high
power.

We have demonstrated that the performance of the regenera-
tors with the modified and conventional couplers is approximately
the same; see Fig. 5 and the text about it. Moreover, the operation
of the regenerator with the modified coupler does not, unlike that
of the device with the conventional coupler, require a high-gain
amplifier inside the NALM. In fact, the former regenerator can op-
erate with the amplifier's gain being as low as 3 dB, whereas the
latter one requires at least 17 dB [11,13]. Let us stress that even
more important than a lower gain is the lower output power of
the amplifier, since it is this parameter that drives the amplifier's
cost. As we demonstrated in Section 3, the output power in the
NALM with the modified coupler (which cannot exceed the
product of the input power and gain G) is one to two orders of
magnitude lower than that in the NALM with the conventional
coupler, regardless of the exact value of the amplifier's gain inside
the loop. Thus, employing the modified coupler has the potential to
make the device proposed in [7] more cost-effective and hence
more practical.
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Fig. 4. Same as in Fig. 3, but for a NALM with fiber dispersion of −2 ps/nm/km.
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Appendix A. Justification of the subtracted term in Eq. (11)

We will present this justification at two levels. First, we will
explain the motivation for subtracting a certain term from arg
(E2out). Then, we will explain why that term should be exactly as
indicated in Eq. (11).

The term in question corresponds to the phase contributions from
the XPM by the counter-propagating signals (see the text after Eq.
(5)). This contribution is determined by the time-averaged signal
power and therefore does not affect the relative phase of any two
adjacent regenerated pulses. Hence its inclusion (or not) in the defini-
tion of phase does not affect the eye opening of a signal with a given
average input power, which is the measure of the regenerator perfor-
mance presented in Section 3. On the other hand, it does affect the
visual appearance of the phase transfer curve in Fig. 2 and in similar
plots in Figs. 3 and 4. In fact, subtraction of this term allows visual
identification of a plateau in those curves, which is where amplitude
fluctuations of the input signal affect the output phase the least (if at
all).

The output phase of a given pulse has two contributions. One is
due to XPM and is determined by the time-averaged power (i.e., in
essence, by the average over powers of all pulses). The other contri-
bution occurs due to SPM and is determined by the peak power of
just that one pulse (see Eq. (5)). For an input with amplitude jitter,
these contributions are independent since relation (6) does not hold
in this case. We want to isolate the contribution due to SPM because
it describes the relative phases of regenerated pulses whose input
powers fluctuate about a given value. As noted in the previous para-
graph, it is this relative phase that determines the eye opening of
the regenerated signal. Therefore, in Eq. (11) we subtract the contri-
bution due to the time-averaged power, which does not affect the
relative phase between two pulses, and hence, the eye opening.

It remains to explain why one needs to use the coefficient “2” in
front of the subtracted term. That is, why does one need to subtract
the sum of the XPM contributions to the phases ϕ3 and ϕ4 and not,
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Fig. 5. Electrical eye diagrams of the input (a) and regenerated (b), (c) signals. For
(b): x=y=0 (the conventional coupler), κz=0.38, average (over all pulses) peak
|E|2=220 mW; for (c): x=1.0, y=0.2, κz=1.3, average peak |E|2=2.6 mW.
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Fig. 6. (a) Minimum and maximum x-values of the modified coupler for which the re-
generator produces eye opening of at least 1.0 dB; (b) the corresponding input powers.
Solid, dashed, and dotted lines correspond to y=0.2, 0.3, and 0.4, respectively.
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say, their mean value? We will present a calculation for the conven-
tional coupler, whose output is given by Eq. (10). Calculations for a
modified coupler with μ≠0 and Δ≠0 are more technical but lead
to the same conclusion. We will use the following shorthand nota-
tions:

α ¼ cos2 κz; β ¼ sin2 κz; E3inj j2 ¼ αjEj2; E4inj j2 ¼ β Ej j2; ðA:1Þ

where the last two formulae follow from Eq. (3) when μ=Δ=0. We
will distinguish the peak power of the input pulse, P=|E|2, from the
time-averaged power, P ¼ E 2

���� . In addition, to emphasize the role of
the coefficient “2” in Eq. (11), we will work not with that expression
but with its generalization where the “2” is replaced by an arbitrary
coefficient K:

arg E2outð Þ−KγL E3inj j2 þ G E4inj j2
� �

≡ arg E2outð Þ−KγL αþ Gβð ÞP : ðA:2Þ

Thus, we will show why one should set K=2 in the phase definition
(A.2).

Recall that we want to isolate the contribution to the phase due to
SPM from that due to XPM. A measure of whether the SPM contribu-
tion to the phase has a plateau with respect to the peak power of an
individual pulse is the derivative of expression (A.2) with respect to
the peak power P, which is to be computed while treating the time-
averaged power P as a constant. The result, using Eqs. (A.2), (10),
(5), and (A.1), is:

∂ A:2ð Þ
∂P

P¼ const

¼ γL
α3 þ Gβ3−αβ αþ Gβð Þcos ϕ3−ϕ4ð Þ

α2 þ β2−2αβ cos ϕ3−ϕ4ð Þ :

����� ðA:3Þ

Next, at least ideally, one would like the plateau in the phase
transfer curve defined by Eq. (A.2) – which can be visualized – to
coincide with the plateau in the contribution to the phase due to
SPM mentioned above, — which cannot be extracted from Eq. (A.2)
and hence cannot be visualized. The plateau of the expression (A.2)
with respect to the pulse peak power plotted in the horizontal axis in
Figs. 2, 3, and 5 is found where the slope of the corresponding curve
vanishes. That slope is computed as the derivative of Eq. (A.2) with
respect to the input peak power P, where now the time-averaged
power is related to the peak power by Eq. (6): P ¼ Pd. Thus:

d A:2ð Þ
dP

P¼Pd

¼ γL
α2c1 þ β2c2−αβ αþ Gβð Þc3 cos ϕ3−ϕ4ð Þ

α2 þ β2−2αβ cos ϕ3−ϕ4ð Þ ;

����� ðA:4aÞ

c1 ¼ α 1−Kdð Þ þ Gβd 2−Kð Þ; c2 ¼ Gβ 1−Kdð Þ þ αd 2−Kð Þ;
c3 ¼ 1þ 2 1−Kð Þd:

ðA:4bÞ

Expressions (A.3) and (A.5) are proportional only when K=2, in
which case

d A:2ð Þ
dP jP¼Pd

¼ 1−2dð Þ∂ A:2ð Þ
∂P jP¼ const:

ðA:5Þ

At a plateau, both sides of this formula vanish. Thus, the phase
transfer curve and the SPM contribution to the phase have plateaus
over the same range of input powers only when the phase is defined
by Eq. (11).
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